Elastic字段映射(_source,doc_value,fileddata,index,store)

2024-06-22 14:36

本文主要是介绍Elastic字段映射(_source,doc_value,fileddata,index,store),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Elastic字段映射(_source,doc_value,filed_data,index,store)

_source:

source 字段用于存储 post 到 ES 的原始 json 文档。为什么要存储原始文档呢?因为 ES 采用倒排索引对文本进行搜索,而倒排索引无法存储原始输入文本。一段文本交给ES后,首先会被分析器(analyzer)打散成单词,为了保证搜索的准确性,在打散的过程中,会去除文本中的标点符号,统一文本的大小写,甚至对于英文等主流语言,会把发生形式变化的单词恢复成原型或词根,然后再根据统一规整之后的单词建立倒排索引,经过如此一番处理,原文已经面目全非。因此需要有一个地方来存储原始的信息,以便在搜到这个文档时能够把原文返回给查询者。

相对于store,它只要建立一个文档索引,当需要对多个字段进行查询的时候,只需要一次io。

那么一定要存储原始文档吗?不一定!如果没有取出整个原始 json 结构体的需求,可以在 mapping 中关闭 source 字段或者只在 source 中存储部分字段(使用store),关闭后能减少内存和数据大小,提高性能。 但是这样做有些负面影响:

  • (1)不能获取到原文
  • (2)无法reindex:如果存储了 source,当 index 发生损坏,或需要改变 mapping 结构时,由于存在原始数据,ES可以通过原始数据自动重建index,如果不存 source 则无法实现
  • (3)无法在查询中使用script:因为 script 需要访问 source 中的字段
  • 文档需要使用update或者update_by_query更新
  • 文档高亮(有store也可以)

可以通过在查询的时候进行过滤

//查询
GET index/_search
{"_source": ["field"],"query" : {"match_all": {}}
}
//设置
{
"settings" : {"mappings" : {"_source": {"enable": true,"excludes": [],"includes": []}}}
}

doc_value

DocValue其实是Lucene在构建倒排索引时,会额外建立一个有序的正排索引(基于document => field value的映射列表)。
它是一个列式存储。不能用在text类型的字段。
因为倒排索引不能进行排序和聚合,因此如果字段需要这两个功能就可以开启它。
缺点:有额外的磁盘消耗

//查询
GET index/_search
{"doc_value": ["field"],"query" : {"match_all": {}}
}
//设置
{
"settings" : {"mappings" : {"properties": {"content": {"doc_value": true // 默认开启},}}}
}

fielddata

fielddata 也是用来进行聚合操作的,但是他是针对text的,算是对doc_value的一个补充。
fielddata 不是临时缓存。它是驻留内存里的数据结构,必须可以快速执行访问,而且构建它的代价十分高昂。如果每个请求都重载数据,性能会十分糟糕

在使用这个的过程中 ,应该好好思考两个问题“:

  • 为什么要对text类型的字段进行聚合操作
  • 如果你真想对这个字段进行聚合,为什么不将他设置为keyword类型,使用doc_value

index

Index:定义字段分词以及创建索引(只有建立索引,才能被检索)。缺点:会额外维护一个索引库
关闭后,字段不建立索引,不被检索,无法通过检索查询到该字段。反过来,有些业务要求某些字段不能被搜索,那么index属性设置为false即可。

store

store开启后
ES会对该字段单独存储倒排索引,每次根据ID检索的时候,会多走一次IO来从倒排索引取数据,以便于快速检索。

注意:如果想要对某个字段实现高亮功能,_source和store至少保留一个。

一般来说_source和store 只要开启一个就行。因为如果_source存在的话,他可以直接在_source检索出来。

store默认是关闭的,它开启的字段越多,索引库就越大,维护的成本就越高,检索的效率也就会会越差、

这篇关于Elastic字段映射(_source,doc_value,fileddata,index,store)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084568

相关文章

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

mybatis-plus如何根据任意字段saveOrUpdateBatch

《mybatis-plus如何根据任意字段saveOrUpdateBatch》MyBatisPlussaveOrUpdateBatch默认按主键判断操作类型,若需按其他唯一字段(如agentId、pe... 目录使用场景方法源码方法改造首先在service层定义接口service层接口实现总结使用场景my

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

shell脚本批量导出redis key-value方式

《shell脚本批量导出rediskey-value方式》为避免keys全量扫描导致Redis卡顿,可先通过dump.rdb备份文件在本地恢复,再使用scan命令渐进导出key-value,通过CN... 目录1 背景2 详细步骤2.1 本地docker启动Redis2.2 shell批量导出脚本3 附录总

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

python3如何找到字典的下标index、获取list中指定元素的位置索引

《python3如何找到字典的下标index、获取list中指定元素的位置索引》:本文主要介绍python3如何找到字典的下标index、获取list中指定元素的位置索引问题,具有很好的参考价值,... 目录enumerate()找到字典的下标 index获取list中指定元素的位置索引总结enumerat

Java继承映射的三种使用方法示例

《Java继承映射的三种使用方法示例》继承在Java中扮演着重要的角色,它允许我们创建一个类(子类),该类继承另一个类(父类)的所有属性和方法,:本文主要介绍Java继承映射的三种使用方法示例,需... 目录前言一、单表继承(Single Table Inheritance)1-1、原理1-2、使用方法1-

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

解读@ConfigurationProperties和@value的区别

《解读@ConfigurationProperties和@value的区别》:本文主要介绍@ConfigurationProperties和@value的区别及说明,具有很好的参考价值,希望对大家... 目录1. 功能对比2. 使用场景对比@ConfigurationProperties@Value3. 核

使用nohup和--remove-source-files在后台运行rsync并记录日志方式

《使用nohup和--remove-source-files在后台运行rsync并记录日志方式》:本文主要介绍使用nohup和--remove-source-files在后台运行rsync并记录日... 目录一、什么是 --remove-source-files?二、示例命令三、命令详解1. nohup2.