使用Python和NLTK进行NLP分析的高级指南

2024-06-22 13:52

本文主要是介绍使用Python和NLTK进行NLP分析的高级指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本文中,将利用数据集来比较和分析自然语言。

本文涵盖的基本构建块是:

  • WordNet和同义词集
  • 相似度比较
  • 树和树岸
  • 命名实体识别

WordNet和同义词集

WordNet是NLTK中的大型词汇数据库语料库。WordNet维护与名词,动词,形容词,副词,同义词,反义词等相关的单词的认知同义词(通常称为同义词集)。

WordNet是一个非常有用的文本分析工具。根据许多许可(从开源到商业),它可用于多种语言(中文,英语,日语,俄语,西班牙语等)。第一个WordNet是由普林斯顿大学在类似MIT的许可下为英语创建的。

一个单词通常根据其含义和词性与多个同义词集相关联。每个同义词集通常提供以下属性:还有其他一些属性,您可以在中的nltk/corpus/reader/wordnet.py源文件中找到它们<your python install>/Lib/site-packages

某些代码可能有助于解决这个问题。

这个辅助函数:

def synset_info(synset):print("Name", synset.name())print("POS:", synset.pos())print("Definition:", synset.definition())print("Examples:", synset.examples())print("Lemmas:", synset.lemmas())print("Antonyms:", [lemma.antonyms() for lemma in synset.lemmas() if len(lemma.antonyms()) > 0])print("Hypernyms:", synset.hypernyms())print("Instance Hypernyms:", synset.instance_hypernyms())print("Part Holonyms:", synset.part_holonyms())print("Part Meronyms:", synset.part_meronyms())print()
synsets = wordnet.synsets('code')

如下所示

5 synsets:
Name code.n.01
POS: n
Definition: a set of rules or principles or laws (especially written ones)
Examples: []
Lemmas: [Lemma('code.n.01.code'), Lemma('code.n.01.codification')]
Antonyms: []
Hypernyms: [Synset('written_communication.n.01')]
Instance Hpernyms: []
Part Holonyms: []
Part Meronyms: []...Name code.n.03
POS: n
Definition: (computer science) the symbolic arrangement of data or instructions in a computer program or the set of such instructions
Examples: []
Lemmas: [Lemma('code.n.03.code'), Lemma('code.n.03.computer_code')]
Antonyms: []
Hypernyms: [Synset('coding_system.n.01')]
Instance Hpernyms: []
Part Holonyms: []
Part Meronyms: []...Name code.v.02
POS: v
Definition: convert ordinary language into code
Examples: ['We should encode the message for security reasons']
Lemmas: [Lemma('code.v.02.code'), Lemma('code.v.02.encipher'), Lemma('code.v.02.cipher'), Lemma('code.v.02.cypher'), Lemma('code.v.02.encrypt'), Lemma('code.v.02.inscribe'), Lemma('code.v.02.write_in_code')]
Antonyms: []
Hypernyms: [Synset('encode.v.01')]
Instance Hpernyms: []
Part Holonyms: []
Part Meronyms: []

同义词集和引理遵循可以可视化的树结构:

def hypernyms(synset):return synset.hypernyms()synsets = wordnet.synsets('soccer')
for synset in synsets:print(synset.name() + " tree:")pprint(synset.tree(rel=hypernyms))print()
code.n.01 tree:
[Synset('code.n.01'),[Synset('written_communication.n.01'),...code.n.02 tree:
[Synset('code.n.02'),[Synset('coding_system.n.01'),...code.n.03 tree:
[Synset('code.n.03'),...code.v.01 tree:
[Synset('code.v.01'),[Synset('tag.v.01'),...code.v.02 tree:
[Synset('code.v.02'),[Synset('encode.v.01'),...

WordNet不能涵盖所有单词及其信息(今天大约有170,000个英语单词,而最新版本的WordNet则大约有155,000个单词),但这是一个很好的起点。在学习了此构建基块的概念之后,如果发现它不足以满足您的需求,则可以迁移到另一个。或者,您可以构建自己的WordNet!

自己尝试

使用Python库,从开放源代码下载Wikipedia的页面,并列出所有单词的同义词集和引理。

相似度比较

相似度比较是一个标识两个文本之间相似度的构件。它在搜索引擎,聊天机器人等中具有许多应用程序。

例如,“足球”和“足球”这两个词是否相关?

syn1 = wordnet.synsets('football')
syn2 = wordnet.synsets('soccer')# A word may have multiple synsets, so need to compare each synset of word1 with synset of word2
for s1 in syn1:for s2 in syn2:print("Path similarity of: ")print(s1, '(', s1.pos(), ')', '[', s1.definition(), ']')print(s2, '(', s2.pos(), ')', '[', s2.definition(), ']')print("   is", s1.path_similarity(s2))print()
Path similarity of:
Synset('football.n.01') ( n ) [ any of various games played with a ball (round or oval) in which two teams try to kick or carry or propel the ball into each other's goal ]
Synset('soccer.n.01') ( n ) [ a football game in which two teams of 11 players try to kick or head a ball into the opponents' goal ]is 0.5Path similarity of:
Synset('football.n.02') ( n ) [ the inflated oblong ball used in playing American football ]
Synset('soccer.n.01') ( n ) [ a football game in which two teams of 11 players try to kick or head a ball into the opponents' goal ]is 0.05

单词的最高路径相似性得分是0.5,表示它们密切相关。

那么“代码”和“错误”呢?这些词在计算机科学中的相似度得分是:

Path similarity of:
Synset('code.n.01') ( n ) [ a set of rules or principles or laws (especially written ones) ]
Synset('bug.n.02') ( n ) [ a fault or defect in a computer program, system, or machine ]is 0.1111111111111111
...
Path similarity of:
Synset('code.n.02') ( n ) [ a coding system used for transmitting messages requiring brevity or secrecy ]
Synset('bug.n.02') ( n ) [ a fault or defect in a computer program, system, or machine ]is 0.09090909090909091
...
Path similarity of:
Synset('code.n.03') ( n ) [ (computer science) the symbolic arrangement of data or instructions in a computer program or the set of such instructions ]
Synset('bug.n.02') ( n ) [ a fault or defect in a computer program, system, or machine ]is 0.09090909090909091

这些是最高的相似性评分,表明它们是相关的。

NLTK提供了多个相似性评分器,例如:

  • 路径相似度
  • lch_similarity
  • wup_similarity
  • res_similarity
  • jcn_similarity
  • lin_similarity

树和树岸

使用NLTK,您可以树形形式表示文本的结构,以帮助进行文本分析。

这是一个例子:

预处理并带有词性(POS)标记的简单文本:

import nltktext = "I love open source"
# Tokenize to words
words = nltk.tokenize.word_tokenize(text)
# POS tag the words
words_tagged = nltk.pos_tag(words)

您必须定义语法以将文本转换为树形结构。本示例使用基于Penn Treebank标签的简单语法。

# A simple grammar to create tree
grammar = "NP: {<JJ><NN>}"

接下来,使用语法创建树:

# Create tree
parser = nltk.RegexpParser(grammar)
tree = parser.parse(words_tagged)
pprint(tree)

这将产生:

Tree('S', [('I', 'PRP'), ('love', 'VBP'), Tree('NP', [('open', 'JJ'), ('source', 'NN')])])

您可以通过图形更好地看到它。

tree.draw()

这种结构有助于正确解释文本的含义。例如,在此文本中标识主题:

subject_tags = ["NN", "NNS", "NP", "NNP", "NNPS", "PRP", "PRP$"]
def subject(sentence_tree):for tagged_word in sentence_tree:# A crude logic for this case -  first word with these tags is considered subjectif tagged_word[1] in subject_tags:return tagged_word[0]print("Subject:", subject(tree))

它显示“ I”是主题:

Subject: I

这是适用于大型应用程序的基本文本分析构建块。例如,当用户说“从1月1日起为我的妈妈Jane预订从伦敦飞往纽约的航班”时,使用此代码块的聊天机器人可以将请求解释为:

动作:书
什么:飞行
旅行者:简
来自:伦敦
纽约
日期:1月1日(明年)

树库是指带有预标记树的语料库。开源,有条件的免费使用和商业树库可用于多种语言。英文最常用的是Penn Treebank,摘自《华尔街日报》,其子集包含在NLTK中。使用树库的一些方法:

words = nltk.corpus.treebank.words()
print(len(words), "words:")
print(words)tagged_sents = nltk.corpus.treebank.tagged_sents()
print(len(tagged_sents), "sentences:")
print(tagged_sents)
100676 words:['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', ...]3914 sentences:[[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'), ('years', 'NNS'), ('old', 'JJ'), (',', ','), ('will', 'MD'), ('join', 'VB'), ('the', 'DT'), ('board', 'NN'), ('as', 'IN'), ('a', 'DT'), ('nonexecutive', 'JJ'), ('director', 'NN'), ...]

See tags in a sentence:

sent0 = tagged_sents[0]
pprint(sent0)
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ('61', 'CD'), ('years', 'NNS'),...

Create a grammar to convert this to a tree:

grammar = '''Subject: {<NNP><NNP>}SubjectInfo: {<CD><NNS><JJ>}Action: {<MD><VB>}Object: {<DT><NN>}Stopwords: {<IN><DT>}ObjectInfo: {<JJ><NN>}When: {<NNP><CD>}
'''
parser = nltk.RegexpParser(grammar)
tree = parser.parse(sent0)
print(tree)
(S(Subject Pierre/NNP Vinken/NNP),/,(SubjectInfo 61/CD years/NNS old/JJ),/,(Action will/MD join/VB)(Object the/DT board/NN)as/INa/DT(ObjectInfo nonexecutive/JJ director/NN)(Subject Nov./NNP)29/CD./.)

See it graphically:

tree.draw()

NLTK的内置命名实体标记器使用PENN的自动内容提取(ACE)程序,可检测常见的实体,例如组织,人员,位置,设施和GPE(地缘政治实体)。

 

这篇关于使用Python和NLTK进行NLP分析的高级指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084477

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑