深入理解String, StringBuffer, StringBuilder的区别(基于JDK1.8)

2024-06-22 10:48

本文主要是介绍深入理解String, StringBuffer, StringBuilder的区别(基于JDK1.8),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 String、StringBuffer、StringBuilder都是JAVA中常用的字符串操作类,对于他们的区别大家也都能耳熟能详,但底层到底是怎样实现的呢?今天就再深入分析下这三种字符串操作的区别、各自的原理及使用场景。

一、String

       先来看一下JDK中String中的部分源码:

public final class Stringimplements java.io.Serializable, Comparable<String>, CharSequence {private final char value[];private int hash; // Default to 0public String() {this.value = new char[0];}public String(String original) {this.value = original.value;this.hash = original.hash;}public String(char value[]) {this.value = Arrays.copyOf(value, value.length);}    ...
}

        可以看到String类、以及value都是final类型的,这样就表明String是无法被继承的,value是无法被改写的。当通过String的构造函数初始化新的String对象时,也只是根据传入的引用对象的value和hashcode进行了赋值。看下面的例子:

public class StringTest {public static void main(String[] args) {String str1 = "abc";String str2 = "abc";String Str3 = new String("abc");}
}

       执行javac StringTest.java后,通过javap -v StringTest.class看下生成的class文件:

Classfile /C:/Users/jiang/workspace/test/src/test/StringTest.classLast modified 2018-7-8; size 363 bytesMD5 checksum f7e4243b0247fb20c5a336d4ba0a580fCompiled from "StringTest.java"
public class test.StringTestminor version: 0major version: 52flags: ACC_PUBLIC, ACC_SUPER
Constant pool:#1 = Methodref          #6.#15         // java/lang/Object."<init>":()V#2 = String             #16            // abc#3 = Class              #17            // java/lang/String#4 = Methodref          #3.#18         // java/lang/String."<init>":(Ljava/lang/String;)V#5 = Class              #19            // test/StringTest#6 = Class              #20            // java/lang/Object#7 = Utf8               <init>#8 = Utf8               ()V#9 = Utf8               Code#10 = Utf8               LineNumberTable#11 = Utf8               main#12 = Utf8               ([Ljava/lang/String;)V#13 = Utf8               SourceFile#14 = Utf8               StringTest.java#15 = NameAndType        #7:#8          // "<init>":()V#16 = Utf8               abc#17 = Utf8               java/lang/String#18 = NameAndType        #7:#21         // "<init>":(Ljava/lang/String;)V#19 = Utf8               test/StringTest#20 = Utf8               java/lang/Object#21 = Utf8               (Ljava/lang/String;)V
{public test.StringTest();descriptor: ()Vflags: ACC_PUBLICCode:stack=1, locals=1, args_size=10: aload_01: invokespecial #1                  // Method java/lang/Object."<init>":()V4: returnLineNumberTable:line 3: 0public static void main(java.lang.String[]);descriptor: ([Ljava/lang/String;)Vflags: ACC_PUBLIC, ACC_STATICCode:stack=3, locals=4, args_size=10: ldc           #2                  // String abc2: astore_13: ldc           #2                  // String abc5: astore_26: new           #3                  // class java/lang/String9: dup10: ldc           #2                  // String abc12: invokespecial #4                  // Method java/lang/String."<init>":(Ljava/lang/String;)V15: astore_316: returnLineNumberTable:line 6: 0line 7: 3line 8: 6line 9: 16
}
SourceFile: "StringTest.java"

        可以看到对于相同的字符串“abc”的引用都是相同的(对于常量池中的相同位置),这样能够节省内存空间,但是缺点就是对于频繁的字符串拼接操作,会造成内存空间的浪费。(需要注意的是这种字符串的拼接操作,从JDK8 开始,会自动被编译成StringBuilder,是不是很666^_^,但还是建议不通过JDK途径去自动转。)看下面的代码:

public class StringTest {public static void main(String[] args) {String str1 = "abc";//String str2 = "abc";//String str3 = new String("abc");String str4 = str1 + "d";String str5 = str4 + "e";}
}

       然后再通过javap看下class文件:

Classfile /C:/Users/jiang/workspace/test/src/test/StringTest.classLast modified 2018-7-8; size 493 bytesMD5 checksum c02bd18ed3ecbe46f9859bf5e272c663Compiled from "StringTest.java"
public class test.StringTestminor version: 0major version: 52flags: ACC_PUBLIC, ACC_SUPER
Constant pool:#1 = Methodref          #10.#19        // java/lang/Object."<init>":()V#2 = String             #20            // abc#3 = Class              #21            // java/lang/StringBuilder#4 = Methodref          #3.#19         // java/lang/StringBuilder."<init>":()V#5 = Methodref          #3.#22         // java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;#6 = String             #23            // d#7 = Methodref          #3.#24         // java/lang/StringBuilder.toString:()Ljava/lang/String;#8 = String             #25            // e#9 = Class              #26            // test/StringTest#10 = Class              #27            // java/lang/Object#11 = Utf8               <init>#12 = Utf8               ()V#13 = Utf8               Code#14 = Utf8               LineNumberTable#15 = Utf8               main#16 = Utf8               ([Ljava/lang/String;)V#17 = Utf8               SourceFile#18 = Utf8               StringTest.java#19 = NameAndType        #11:#12        // "<init>":()V#20 = Utf8               abc#21 = Utf8               java/lang/StringBuilder#22 = NameAndType        #28:#29        // append:(Ljava/lang/String;)Ljava/lang/StringBuilder;#23 = Utf8               d#24 = NameAndType        #30:#31        // toString:()Ljava/lang/String;#25 = Utf8               e#26 = Utf8               test/StringTest#27 = Utf8               java/lang/Object#28 = Utf8               append#29 = Utf8               (Ljava/lang/String;)Ljava/lang/StringBuilder;#30 = Utf8               toString#31 = Utf8               ()Ljava/lang/String;
{public test.StringTest();descriptor: ()Vflags: ACC_PUBLICCode:stack=1, locals=1, args_size=10: aload_01: invokespecial #1                  // Method java/lang/Object."<init>":()V4: returnLineNumberTable:line 3: 0public static void main(java.lang.String[]);descriptor: ([Ljava/lang/String;)Vflags: ACC_PUBLIC, ACC_STATICCode:stack=2, locals=4, args_size=10: ldc           #2                  // String abc2: astore_13: new           #3                  // class java/lang/StringBuilder6: dup7: invokespecial #4                  // Method java/lang/StringBuilder."<init>":()V10: aload_111: invokevirtual #5                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;14: ldc           #6                  // String d16: invokevirtual #5                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;19: invokevirtual #7                  // Method java/lang/StringBuilder.toString:()Ljava/lang/String;22: astore_223: new           #3                  // class java/lang/StringBuilder26: dup27: invokespecial #4                  // Method java/lang/StringBuilder."<init>":()V30: aload_231: invokevirtual #5                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;34: ldc           #8                  // String e36: invokevirtual #5                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;39: invokevirtual #7                  // Method java/lang/StringBuilder.toString:()Ljava/lang/String;42: astore_343: returnLineNumberTable:line 6: 0line 9: 3line 10: 23line 11: 43
}
SourceFile: "StringTest.java"

二、StringBuilder

       也是先来看StringBuilder的源码:

public final class StringBuilderextends AbstractStringBuilderimplements java.io.Serializable, CharSequence
{public StringBuilder() {super(16);}public StringBuilder(String str) {super(str.length() + 16);append(str);}public StringBuilder append(String str) {super.append(str);return this;}...
}abstract class AbstractStringBuilder implements Appendable, CharSequence {char[] value;int count;AbstractStringBuilder(int capacity) {value = new char[capacity];}public AbstractStringBuilder append(String str) {if (str == null)return appendNull();int len = str.length();ensureCapacityInternal(count + len);str.getChars(0, len, value, count);count += len;return this;}...
}

        可以看到StringBuilder的value是个char数组,(当然从JDK9开始,value从char数组变成了byte数组)。每次append时都是通过调用native的System.arraycopy实现的(在getChars中调用的)。

三、StringBuffer

StringBuffer的源码如下:

 public final class StringBufferextends AbstractStringBuilderimplements java.io.Serializable, CharSequence
{private transient char[] toStringCache;public StringBuffer() {super(16);}public StringBuffer(String str) {super(str.length() + 16);append(str);}public synchronized StringBuffer append(String str) {toStringCache = null;super.append(str);return this;}...
}

        和StringBuilder一样,都是用了char数组保存value,append也是调用了AbstractStringBuilder的append方法。区别只是在于char数组加了transient关键字,以及方法上加了synchronized方法。

       综上所述,String、StringBuilder、StringBuffer的使用场景如下:

       当处理定长字符串时,建议用String;

       当处理变长字符串时,并且是单线程环境时,建议用StringBuilder;

       当处理变长字符串时,并且是多线程环境时,建议用StringBuffer。

这篇关于深入理解String, StringBuffer, StringBuilder的区别(基于JDK1.8)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1084077

相关文章

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Go之errors.New和fmt.Errorf 的区别小结

《Go之errors.New和fmt.Errorf的区别小结》本文主要介绍了Go之errors.New和fmt.Errorf的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考... 目录error的基本用法1. 获取错误信息2. 在条件判断中使用基本区别1.函数签名2.使用场景详细对

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取