GOT和PLT原理简析

2024-06-22 05:58
文章标签 原理 简析 got plt

本文主要是介绍GOT和PLT原理简析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GOT(Global Offset Table)和PLT(Procedure Linkage Table)是Linux系统下面ELF格式的可执行文件中,用于定位全局变量和过程的数据信息。以C程序为例,一个程序可能会包含多个文件,可执行文件的生成过程通常由以下几步组成。

1. 编译器把每个.c文件编译成汇编(.s)文件。

2. 汇编器把每个(.s)文件转换为(.o)文件。

3. 链接器把多个.o文件链接为一个可执行文件(.out)。

.s文件是汇编文件的后缀,一般对此种类型文件的关注不多,不再讨论,重点在.o文件和.out文件。

.c文件中通常有对变量和过程的使用,若是变量和过程定义在当前文件中,则可以使用相对偏移寻址来调用。若是定义在其他文件中,则在编译当前文件时无法获取其地址;若是定义在动态库中,则直到程序被加载、运行时,才能够确定。本文通过《深入理解计算机系统》中讲动态链接一章中的例子,通过gdb的调试,研究调用动态库中函数时的重定位过程。

1. 动态库程序。

addvec.c

void addvec(int *x, int *y, int *z, int n){int i;for(i = 0; i < n; i++)z[i] = x[i] + y[i];
}
通过命令gcc -fPIC -shared addvec.c -o libvec.so可以把上面的程序转换为动态库libvec.so。
2. 调用动态库的主程序。

main.c

#include <stdio.h>int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];int main(){addvec(x, y, z, 2);printf("z = [%d %d]\n", z[0], z[1]);addvec(x, y, z, 2);printf("z = [%d %d]\n", z[0], z[1]);return 0;
}

通过命令gcc main.c -o main -L./ -lvec生成可执行文件main。-L./ -lvec表示链接当前目录下的动态链接库libvec.so。

使用命令objdump -d -s > main.dmp反汇编main。

反汇编生成的文件中,主要有三个段与对动态库函数addvec的调用有关:.got.plt,.plt和代码段.text。

代码段容易理解,就是程序语句所对应的指令组成的。.got.plt中保存的是数据,为每个动态调用保存一个条目,条目的内容应该是对动态库函数的调用所跳转到的目标地址。由于Linux采用了延迟绑定技术,可执行文件中got.plt中的地址并不是目标地址,而是动态链接器(ld-linux)中的地址。在程序执行的第一次调用时,ld-linux把.got.plt的地址填写正确,之后的调用,就可以使用.got.plt中的目标地址了。.plt段中的内容则是实现跳转操作的代码片段。

代码段:


.got.plt


.plt


源代码中,对于函数的addvec的两次调用,命令为

callq  400580 <addvec@plt>

调用的目标地址是.plt段中的addvec@plt函数。该函数由三条语句组成,其作用分别为:

1. 跳转到地址600af8,这个地址位于.got.plt中。从图中可以看到got.plt起始于600ad0,终止于600b08(600b00 + 8)。并且600af8的内容为86054000,按照小端的读法,其内容为00400586,实际就是下一条(第2条)指令。

2. 第二条指令把当前函数的id(0x2)压入栈中。

3. 第三条指令,跳转到400550,这之后的工作可以视为系统在运行时填充地址600af8的过程。也就是在延迟绑定机制下,第一次执行时,600af8的内容是400586,第二次及之后的内容就会修改为addvec函数的实际地址,可以通过gdb来验证。

可以看到,第一次调用addvec的时候,地址600af8中的内容是0x0000000000400586,第二次调用的时候就变成了0x00007ffff7bd95e5,是addvec的实际入口地址,与预期的相同。

这篇关于GOT和PLT原理简析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083477

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja