[信号与系统]模拟域中的一阶低通滤波器和二阶滤波器

2024-06-22 00:44

本文主要是介绍[信号与系统]模拟域中的一阶低通滤波器和二阶滤波器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

不是学电子出身的,这里很多东西是问了朋友…

模拟域中的一阶低通滤波器传递函数

模拟域中的一阶低通滤波器的传递函数可以表示为:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

这是因为一阶低通滤波器的设计目标是允许低频信号通过,同时衰减高频信号。具体来说,它的频率响应特性决定了这个形式的传递函数。

1. 传递函数的来源

一阶低通滤波器的传递函数来源于它的微分方程描述。考虑一个简单的RC(电阻-电容)电路:

  • 电阻 R R R
  • 电容 C C C
    在这里插入图片描述

高通滤波器

对于高通滤波器电路(左图),我们有一个电容 C 1 C_1 C1 和一个电阻 R 1 R_1 R1

  1. 阻抗计算

    • 电容的阻抗 Z C = 1 j ω C 1 Z_C = \frac{1}{j\omega C_1} ZC=C11
    • 电阻的阻抗 Z R = R 1 Z_R = R_1 ZR=R1
  2. 电路分析

    • 输入电压 V i n V_{in} Vin 加在电容和电阻的串联上。
    • 输出电压 V o u t V_{out} Vout 在电阻上。

使用分压公式:

V o u t = V i n ⋅ Z R Z R + Z C = V i n ⋅ R 1 R 1 + 1 j ω C 1 = V i n ⋅ R 1 ⋅ j ω C 1 1 + j ω R 1 C 1 V_{out} = V_{in} \cdot \frac{Z_R}{Z_R + Z_C} = V_{in} \cdot \frac{R_1}{R_1 + \frac{1}{j\omega C_1}} = V_{in} \cdot \frac{R_1 \cdot j\omega C_1}{1 + j\omega R_1 C_1} Vout=VinZR+ZCZR=VinR1+C11R1=Vin1+R1C1R1C1

所以,传递函数 H ( s ) H(s) H(s) 是:

H ( s ) = V o u t V i n = j ω R 1 C 1 1 + j ω R 1 C 1 = s R 1 C 1 1 + s R 1 C 1 H(s) = \frac{V_{out}}{V_{in}} = \frac{j\omega R_1 C_1}{1 + j\omega R_1 C_1} = \frac{s R_1 C_1}{1 + s R_1 C_1} H(s)=VinVout=1+R1C1R1C1=1+sR1C1sR1C1

ω c = 1 R 1 C 1 \omega_c = \frac{1}{R_1 C_1} ωc=R1C11,则传递函数为:

H ( s ) = s / ω c 1 + s / ω c H(s) = \frac{s / \omega_c}{1 + s / \omega_c} H(s)=1+s/ωcs/ωc

低通滤波器

对于低通滤波器电路(右图),我们有一个电阻 R 1 R_1 R1 和一个电容 C 1 C_1 C1

  1. 阻抗计算

    • 电阻的阻抗 Z R = R 1 Z_R = R_1 ZR=R1
    • 电容的阻抗 Z C = 1 j ω C 1 Z_C = \frac{1}{j\omega C_1} ZC=C11
  2. 电路分析

    • 输入电压 V i n V_{in} Vin 加在电阻和电容的串联上。
    • 输出电压 V o u t V_{out} Vout 在电容上。

使用分压公式:

V o u t = V i n ⋅ Z C Z R + Z C = V i n ⋅ 1 j ω C 1 R 1 + 1 j ω C 1 = V i n ⋅ 1 j ω R 1 C 1 + 1 V_{out} = V_{in} \cdot \frac{Z_C}{Z_R + Z_C} = V_{in} \cdot \frac{\frac{1}{j\omega C_1}}{R_1 + \frac{1}{j\omega C_1}} = V_{in} \cdot \frac{1}{j\omega R_1 C_1 + 1} Vout=VinZR+ZCZC=VinR1+C11C11=VinR1C1+11

所以,传递函数 H ( s ) H(s) H(s) 是:

H ( s ) = V o u t V i n = 1 1 + j ω R 1 C 1 = 1 1 + s R 1 C 1 H(s) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + j\omega R_1 C_1} = \frac{1}{1 + s R_1 C_1} H(s)=VinVout=1+R1C11=1+sR1C11

ω c = 1 R 1 C 1 \omega_c = \frac{1}{R_1 C_1} ωc=R1C11,则传递函数为:

H ( s ) = 1 1 + s / ω c H(s) = \frac{1}{1 + s / \omega_c} H(s)=1+s/ωc1

微分方程形式

这个电路的微分方程可以写为:

V o u t ( t ) = 1 R C ∫ − ∞ t V i n ( τ ) e − t − τ R C d τ V_{out}(t) = \frac{1}{RC} \int_{-\infty}^{t} V_{in}(\tau) e^{-\frac{t - \tau}{RC}} d\tau Vout(t)=RC1tVin(τ)eRCtτdτ

通过拉普拉斯变换,将其转化到频域:

V o u t ( s ) V i n ( s ) = 1 R C ⋅ s + 1 \frac{V_{out}(s)}{V_{in}(s)} = \frac{1}{RC \cdot s + 1} Vin(s)Vout(s)=RCs+11

ω c = 1 R C \omega_c = \frac{1}{RC} ωc=RC1,得到:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

2. 频率响应

一阶低通滤波器的传递函数 H ( s ) H(s) H(s) 表示了滤波器对不同频率信号的响应:

  • s = j ω s = j\omega s= 时,低频( ω \omega ω 较小)信号通过的幅度接近 1,即通过率高。
  • ω \omega ω 较大时,传递函数的值接近 0,即高频信号被大大衰减。

3. 截止频率

ω c \omega_c ωc 是滤波器的截止频率,即在该频率处信号的幅度被衰减到原来的 1 2 \frac{1}{\sqrt{2}} 2 1 倍(约 0.707 倍)。它定义了低通滤波器允许通过的最大频率。

综上所述,模拟域中的一阶低通滤波器传递函数为:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

是由其设计目标、微分方程描述以及频率响应特性决定的。

二阶滤波器通过联级一阶滤波器的推导

二阶滤波器可以通过两个一阶滤波器串联(联级)得到。假设我们有两个一阶低通滤波器,其传递函数分别为:

H 1 ( s ) = 1 1 + s / ω c 1 H_1(s) = \frac{1}{1 + s / \omega_{c1}} H1(s)=1+s/ωc11

H 2 ( s ) = 1 1 + s / ω c 2 H_2(s) = \frac{1}{1 + s / \omega_{c2}} H2(s)=1+s/ωc21

当将这两个一阶滤波器串联时,总的传递函数 H ( s ) H(s) H(s) 为:

H ( s ) = H 1 ( s ) ⋅ H 2 ( s ) H(s) = H_1(s) \cdot H_2(s) H(s)=H1(s)H2(s)

即:

H ( s ) = ( 1 1 + s / ω c 1 ) ⋅ ( 1 1 + s / ω c 2 ) H(s) = \left( \frac{1}{1 + s / \omega_{c1}} \right) \cdot \left( \frac{1}{1 + s / \omega_{c2}} \right) H(s)=(1+s/ωc11)(1+s/ωc21)

假设两个一阶滤波器的截止频率相同,即 ω c 1 = ω c 2 = ω c \omega_{c1} = \omega_{c2} = \omega_c ωc1=ωc2=ωc,则总的传递函数为:

H ( s ) = ( 1 1 + s / ω c ) 2 H(s) = \left( \frac{1}{1 + s / \omega_c} \right)^2 H(s)=(1+s/ωc1)2

将其展开得到:

H ( s ) = 1 ( 1 + s / ω c ) 2 = 1 1 + 2 s ω c + ( s ω c ) 2 H(s) = \frac{1}{(1 + s / \omega_c)^2} = \frac{1}{1 + \frac{2s}{\omega_c} + \left( \frac{s}{\omega_c} \right)^2} H(s)=(1+s/ωc)21=1+ωc2s+(ωcs)21

这就是一个标准的二阶低通滤波器的传递函数形式。它可以表示为:

H ( s ) = 1 1 + 2 s ω c + ( s ω c ) 2 H(s) = \frac{1}{1 + \frac{2s}{\omega_c} + \left( \frac{s}{\omega_c} \right)^2} H(s)=1+ωc2s+(ωcs)21

或者更一般的形式:

H ( s ) = ω c 2 s 2 + 2 ζ ω c s + ω c 2 H(s) = \frac{\omega_c^2}{s^2 + 2\zeta\omega_c s + \omega_c^2} H(s)=s2+2ζωcs+ωc2ωc2

其中, ζ \zeta ζ 是阻尼系数,对于上述情况 ζ = 1 \zeta = 1 ζ=1。通过改变 ζ \zeta ζ 的值,可以设计出具有不同频率特性的二阶滤波器。

总结

通过将两个一阶低通滤波器串联,我们得到了一个二阶低通滤波器的传递函数。这个方法可以推广到高通、带通和带阻滤波器,通过适当的组合一阶滤波器可以实现各种复杂的频率响应特性。

这篇关于[信号与系统]模拟域中的一阶低通滤波器和二阶滤波器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082807

相关文章

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

Oracle数据库在windows系统上重启步骤

《Oracle数据库在windows系统上重启步骤》有时候在服务中重启了oracle之后,数据库并不能正常访问,下面:本文主要介绍Oracle数据库在windows系统上重启的相关资料,文中通过代... oracle数据库在Windows上重启的方法我这里是使用oracle自带的sqlplus工具实现的方

Java 单元测试之Mockito 模拟静态方法与私有方法最佳实践

《Java单元测试之Mockito模拟静态方法与私有方法最佳实践》本文将深入探讨如何使用Mockito来模拟静态方法和私有方法,结合大量实战代码示例,带你突破传统单元测试的边界,写出更彻底、更独立... 目录Mockito 简介:为什么选择它?环境准备模拟静态方法:打破“不可变”的枷锁传统困境解法一:使用M

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

更改linux系统的默认Python版本方式

《更改linux系统的默认Python版本方式》通过删除原Python软链接并创建指向python3.6的新链接,可切换系统默认Python版本,需注意版本冲突、环境混乱及维护问题,建议使用pyenv... 目录更改系统的默认python版本软链接软链接的特点创建软链接的命令使用场景注意事项总结更改系统的默

在Linux系统上连接GitHub的方法步骤(适用2025年)

《在Linux系统上连接GitHub的方法步骤(适用2025年)》在2025年,使用Linux系统连接GitHub的推荐方式是通过SSH(SecureShell)协议进行身份验证,这种方式不仅安全,还... 目录步骤一:检查并安装 Git步骤二:生成 SSH 密钥步骤三:将 SSH 公钥添加到 github

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright