[信号与系统]模拟域中的一阶低通滤波器和二阶滤波器

2024-06-22 00:44

本文主要是介绍[信号与系统]模拟域中的一阶低通滤波器和二阶滤波器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

不是学电子出身的,这里很多东西是问了朋友…

模拟域中的一阶低通滤波器传递函数

模拟域中的一阶低通滤波器的传递函数可以表示为:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

这是因为一阶低通滤波器的设计目标是允许低频信号通过,同时衰减高频信号。具体来说,它的频率响应特性决定了这个形式的传递函数。

1. 传递函数的来源

一阶低通滤波器的传递函数来源于它的微分方程描述。考虑一个简单的RC(电阻-电容)电路:

  • 电阻 R R R
  • 电容 C C C
    在这里插入图片描述

高通滤波器

对于高通滤波器电路(左图),我们有一个电容 C 1 C_1 C1 和一个电阻 R 1 R_1 R1

  1. 阻抗计算

    • 电容的阻抗 Z C = 1 j ω C 1 Z_C = \frac{1}{j\omega C_1} ZC=C11
    • 电阻的阻抗 Z R = R 1 Z_R = R_1 ZR=R1
  2. 电路分析

    • 输入电压 V i n V_{in} Vin 加在电容和电阻的串联上。
    • 输出电压 V o u t V_{out} Vout 在电阻上。

使用分压公式:

V o u t = V i n ⋅ Z R Z R + Z C = V i n ⋅ R 1 R 1 + 1 j ω C 1 = V i n ⋅ R 1 ⋅ j ω C 1 1 + j ω R 1 C 1 V_{out} = V_{in} \cdot \frac{Z_R}{Z_R + Z_C} = V_{in} \cdot \frac{R_1}{R_1 + \frac{1}{j\omega C_1}} = V_{in} \cdot \frac{R_1 \cdot j\omega C_1}{1 + j\omega R_1 C_1} Vout=VinZR+ZCZR=VinR1+C11R1=Vin1+R1C1R1C1

所以,传递函数 H ( s ) H(s) H(s) 是:

H ( s ) = V o u t V i n = j ω R 1 C 1 1 + j ω R 1 C 1 = s R 1 C 1 1 + s R 1 C 1 H(s) = \frac{V_{out}}{V_{in}} = \frac{j\omega R_1 C_1}{1 + j\omega R_1 C_1} = \frac{s R_1 C_1}{1 + s R_1 C_1} H(s)=VinVout=1+R1C1R1C1=1+sR1C1sR1C1

ω c = 1 R 1 C 1 \omega_c = \frac{1}{R_1 C_1} ωc=R1C11,则传递函数为:

H ( s ) = s / ω c 1 + s / ω c H(s) = \frac{s / \omega_c}{1 + s / \omega_c} H(s)=1+s/ωcs/ωc

低通滤波器

对于低通滤波器电路(右图),我们有一个电阻 R 1 R_1 R1 和一个电容 C 1 C_1 C1

  1. 阻抗计算

    • 电阻的阻抗 Z R = R 1 Z_R = R_1 ZR=R1
    • 电容的阻抗 Z C = 1 j ω C 1 Z_C = \frac{1}{j\omega C_1} ZC=C11
  2. 电路分析

    • 输入电压 V i n V_{in} Vin 加在电阻和电容的串联上。
    • 输出电压 V o u t V_{out} Vout 在电容上。

使用分压公式:

V o u t = V i n ⋅ Z C Z R + Z C = V i n ⋅ 1 j ω C 1 R 1 + 1 j ω C 1 = V i n ⋅ 1 j ω R 1 C 1 + 1 V_{out} = V_{in} \cdot \frac{Z_C}{Z_R + Z_C} = V_{in} \cdot \frac{\frac{1}{j\omega C_1}}{R_1 + \frac{1}{j\omega C_1}} = V_{in} \cdot \frac{1}{j\omega R_1 C_1 + 1} Vout=VinZR+ZCZC=VinR1+C11C11=VinR1C1+11

所以,传递函数 H ( s ) H(s) H(s) 是:

H ( s ) = V o u t V i n = 1 1 + j ω R 1 C 1 = 1 1 + s R 1 C 1 H(s) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + j\omega R_1 C_1} = \frac{1}{1 + s R_1 C_1} H(s)=VinVout=1+R1C11=1+sR1C11

ω c = 1 R 1 C 1 \omega_c = \frac{1}{R_1 C_1} ωc=R1C11,则传递函数为:

H ( s ) = 1 1 + s / ω c H(s) = \frac{1}{1 + s / \omega_c} H(s)=1+s/ωc1

微分方程形式

这个电路的微分方程可以写为:

V o u t ( t ) = 1 R C ∫ − ∞ t V i n ( τ ) e − t − τ R C d τ V_{out}(t) = \frac{1}{RC} \int_{-\infty}^{t} V_{in}(\tau) e^{-\frac{t - \tau}{RC}} d\tau Vout(t)=RC1tVin(τ)eRCtτdτ

通过拉普拉斯变换,将其转化到频域:

V o u t ( s ) V i n ( s ) = 1 R C ⋅ s + 1 \frac{V_{out}(s)}{V_{in}(s)} = \frac{1}{RC \cdot s + 1} Vin(s)Vout(s)=RCs+11

ω c = 1 R C \omega_c = \frac{1}{RC} ωc=RC1,得到:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

2. 频率响应

一阶低通滤波器的传递函数 H ( s ) H(s) H(s) 表示了滤波器对不同频率信号的响应:

  • s = j ω s = j\omega s= 时,低频( ω \omega ω 较小)信号通过的幅度接近 1,即通过率高。
  • ω \omega ω 较大时,传递函数的值接近 0,即高频信号被大大衰减。

3. 截止频率

ω c \omega_c ωc 是滤波器的截止频率,即在该频率处信号的幅度被衰减到原来的 1 2 \frac{1}{\sqrt{2}} 2 1 倍(约 0.707 倍)。它定义了低通滤波器允许通过的最大频率。

综上所述,模拟域中的一阶低通滤波器传递函数为:

H ( s ) = 1 s + ω c H(s) = \frac{1}{s + \omega_c} H(s)=s+ωc1

是由其设计目标、微分方程描述以及频率响应特性决定的。

二阶滤波器通过联级一阶滤波器的推导

二阶滤波器可以通过两个一阶滤波器串联(联级)得到。假设我们有两个一阶低通滤波器,其传递函数分别为:

H 1 ( s ) = 1 1 + s / ω c 1 H_1(s) = \frac{1}{1 + s / \omega_{c1}} H1(s)=1+s/ωc11

H 2 ( s ) = 1 1 + s / ω c 2 H_2(s) = \frac{1}{1 + s / \omega_{c2}} H2(s)=1+s/ωc21

当将这两个一阶滤波器串联时,总的传递函数 H ( s ) H(s) H(s) 为:

H ( s ) = H 1 ( s ) ⋅ H 2 ( s ) H(s) = H_1(s) \cdot H_2(s) H(s)=H1(s)H2(s)

即:

H ( s ) = ( 1 1 + s / ω c 1 ) ⋅ ( 1 1 + s / ω c 2 ) H(s) = \left( \frac{1}{1 + s / \omega_{c1}} \right) \cdot \left( \frac{1}{1 + s / \omega_{c2}} \right) H(s)=(1+s/ωc11)(1+s/ωc21)

假设两个一阶滤波器的截止频率相同,即 ω c 1 = ω c 2 = ω c \omega_{c1} = \omega_{c2} = \omega_c ωc1=ωc2=ωc,则总的传递函数为:

H ( s ) = ( 1 1 + s / ω c ) 2 H(s) = \left( \frac{1}{1 + s / \omega_c} \right)^2 H(s)=(1+s/ωc1)2

将其展开得到:

H ( s ) = 1 ( 1 + s / ω c ) 2 = 1 1 + 2 s ω c + ( s ω c ) 2 H(s) = \frac{1}{(1 + s / \omega_c)^2} = \frac{1}{1 + \frac{2s}{\omega_c} + \left( \frac{s}{\omega_c} \right)^2} H(s)=(1+s/ωc)21=1+ωc2s+(ωcs)21

这就是一个标准的二阶低通滤波器的传递函数形式。它可以表示为:

H ( s ) = 1 1 + 2 s ω c + ( s ω c ) 2 H(s) = \frac{1}{1 + \frac{2s}{\omega_c} + \left( \frac{s}{\omega_c} \right)^2} H(s)=1+ωc2s+(ωcs)21

或者更一般的形式:

H ( s ) = ω c 2 s 2 + 2 ζ ω c s + ω c 2 H(s) = \frac{\omega_c^2}{s^2 + 2\zeta\omega_c s + \omega_c^2} H(s)=s2+2ζωcs+ωc2ωc2

其中, ζ \zeta ζ 是阻尼系数,对于上述情况 ζ = 1 \zeta = 1 ζ=1。通过改变 ζ \zeta ζ 的值,可以设计出具有不同频率特性的二阶滤波器。

总结

通过将两个一阶低通滤波器串联,我们得到了一个二阶低通滤波器的传递函数。这个方法可以推广到高通、带通和带阻滤波器,通过适当的组合一阶滤波器可以实现各种复杂的频率响应特性。

这篇关于[信号与系统]模拟域中的一阶低通滤波器和二阶滤波器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082807

相关文章

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

全屋WiFi 7无死角! 华硕 RP-BE58无线信号放大器体验测评

《全屋WiFi7无死角!华硕RP-BE58无线信号放大器体验测评》家里网络总是有很多死角没有网,我决定入手一台支持Mesh组网的WiFi7路由系统以彻底解决网络覆盖问题,最终选择了一款功能非常... 自2023年WiFi 7技术标准(IEEE 802.11be)正式落地以来,这项第七代无线网络技术就以超高速