用栈来求解限制后的汉诺塔问题

2024-06-21 22:38

本文主要是介绍用栈来求解限制后的汉诺塔问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用栈来求解限制后的汉诺塔问题(限制不能从最左侧的塔直接移动到最右侧,也不能从最右侧直接移动到最左侧,而是必须经过中间,求当塔有N层的时候,打印最优移动过程和最优移动总步数)

import java.util.Stack;//用栈来求解限制后的汉诺塔问题(限制不能从最左侧的塔直接移动到最右侧,也不能从最右侧直接移动到最左侧,而是必须经过中间,求当塔有N层的时候,打印最优移动过程和最优移动总步数)
public class HanoiStack {//递归的方法public static int hanoiProblem1(int num, String left, String mid,String right) {if (num < 1) {return 0;}return process(num, left, mid, right, left, right);}public static int process(int num, String left, String mid, String right,String from, String to) {if (num == 1) {if (from.equals(mid) || to.equals(mid)) {System.out.println("Move 1 from " + from + " to " + to);return 1;} else {System.out.println("Move 1 from " + from + " to " + mid);System.out.println("Move 1 from " + mid + " to " + to);return 2;}}if (from.equals(mid) || to.equals(mid)) {String another = (from.equals(left) || to.equals(left)) ? right : left;int part1 = process(num - 1, left, mid, right, from, another);int part2 = 1;System.out.println("Move " + num + " from " + from + " to " + to);int part3 = process(num - 1, left, mid, right, another, to);return part1 + part2 + part3;} else {int part1 = process(num - 1, left, mid, right, from, to);int part2 = 1;System.out.println("Move " + num + " from " + from + " to " + mid);int part3 = process(num - 1, left, mid, right, to, from);int part4 = 1;System.out.println("Move " + num + " from " + mid + " to " + to);int part5 = process(num - 1, left, mid, right, from, to);return part1 + part2 + part3 + part4 + part5;}}
//=====================================================================================//枚举所有的操作public static enum Action {No, LToM, MToL, MToR, RToM}//非递归的方法,用栈来模拟汉诺塔的三个塔public static int hanoiProblem2(int num, String left, String mid, String right) {Stack<Integer> lS = new Stack<Integer>();Stack<Integer> mS = new Stack<Integer>();Stack<Integer> rS = new Stack<Integer>();lS.push(Integer.MAX_VALUE);mS.push(Integer.MAX_VALUE);rS.push(Integer.MAX_VALUE);for (int i = num; i > 0; i--) {lS.push(i);}Action[] record = { Action.No };int step = 0;while (rS.size() != num + 1) {step += fStackTotStack(record, Action.MToL, Action.LToM, lS, mS, left, mid);step += fStackTotStack(record, Action.LToM, Action.MToL, mS, lS, mid, left);step += fStackTotStack(record, Action.RToM, Action.MToR, mS, rS, mid, right);step += fStackTotStack(record, Action.MToR, Action.RToM, rS, mS, right, mid);}return step;}public static int fStackTotStack(Action[] record, Action preNoAct,Action nowAct, Stack<Integer> fStack, Stack<Integer> tStack,String from, String to) {if (record[0] != preNoAct && fStack.peek() < tStack.peek()) {tStack.push(fStack.pop());System.out.println("Move " + tStack.peek() + " from " + from + " to " + to);record[0] = nowAct;return 1;}return 0;}public static void main(String[] args) {int num = 2;   //汉诺塔的层数// solution 1(递归的方法)int steps1 = hanoiProblem1(num, "left", "mid", "right");System.out.println("It will move " + steps1 + " steps.");System.out.println("===================================");// solution 2(非递归的方法)int steps2 = hanoiProblem2(num, "left", "mid", "right");System.out.println("It will move " + steps2 + " steps.");System.out.println("===================================");}}


这篇关于用栈来求解限制后的汉诺塔问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1082537

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.