BirdTalk IM集群中消息流转策略讨论

2024-06-21 16:20

本文主要是介绍BirdTalk IM集群中消息流转策略讨论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BirdTalk IM集群中消息流转策略讨论

目前群聊的存储策略是1写多读方案;每个群组一个队列,按时间顺序排列,不区分用户;

私聊的存储是写扩散的,每个人都有自己的消息队列,按时间顺序 保存所有的消息,不区分会话;

1、单机模式

1.1 私聊消息

登录的算法,要求用户按照ID指定的服务器,而不是按照IP,这是因为ip经常发生变动;用ID可以保证各个会话终端都在一个服务器上;

私聊有3类确认:

1)服务器入库的成功回执;

2)对方给的送达回执;

3)阅读回执;

客户端需要一个定时器,对发送的消息监控,如果30秒没有回复成功,认为发送失败;最多尝试3次;

对于没有送达回执的消息,需要向服务区发送查询请求,(回执可能丢失),查询回执会让服务器对在线用户尝试重发;只要客户端实现的正确的,就肯定不会丢消息并应答送达回执;阅读回执可有可无;

1.2 群聊消息

对于单机的群聊,对于内存中没有的用户,就是不在线的,不转发数据;

当群聊用户某个时间点登录,那么先做准备工作,标记自己状态,然后开始同步历史数据,这样能保证数据不丢失。

2、集群模式

不同于TINODE集群直接使用RPC连接,而是使用消息队列同步消息,当一条消息需要从一台服务器路由到另一一台服务器时,可以使用kafka的一个主题来实现,每个服务器一个单独的主题用于接收;这比每对服务器都要建立一个连接好多了,如果集群有1000台服务器,那么就需要1000个TCP连接。

路由可以使用redis辅助实现,为了及时通知对方发现路由变更,也需要使用一个公共的主题来广播消息。

2.1 私聊消息

假如有服务器A和服务器B,小明在服务器A,小美在服务器B;

开始时候小美不在线,消息都写入了小美的消息队列;当某一时刻,小美在服务器B登录,那么:

1)先告知集群当前此用户的此会话在服务器B;

2)执行一次同步历史数据之后,准备接收来自其他服务器用户的数据,当然也包括服务器A;

这里存在一个问题:

服务器A上的小明发现小美上线前,将数据写到了小美的消息队列,但是其实此刻,小美已经上线并且同步完数据了;那么这条消息就会被服务器遗漏,小美客户端也无从得知该条消息;

这个问题的产生主要是路由状态的扩散需要时间,异步的同步历史数据会造成潜在的数据丢失。

但是,与群聊不同,私聊是有回执的;当小明发现小美一直都没有回复接收回执,则会一直查询回执,服务器A会重发消息,此时如果发现了消息路由在服务器B,可以保证消息重发而不丢失;

但是有个缺点也很明显:有可能之前丢失的消息会在客户端出现乱序!!!

2.2 群聊消息

假如有服务器A和服务器B,一个群组G100;小明在服务器A,小美在服务器B;

当小美在服务器登录时间不确定的时候如何保证群聊消息不丢失?

可能会丢失的原因在于:

1)分布式环境下,消息的编号不是连续的流水号,无法通过编号来判断是否发生了丢失;

2)登录后如果只与服务器B同步一次数据,同步数据与其他服务器发现路由有时间差,时间差内的消息会丢失;

那么处理方式也很明显:

**1)传统轮询模式:**每次查询都告知服务器最后一条的ID,然后从数据库表中查询后续的消息,对于scylladb来说肯定是比传统的数据库强,但是效率仍然很低;

**2)暴力的集群同步:**不管服务器B是否有G100群组的用户在线,一直连续不断的转发消息,那么可以服务器B上存在的消息在时间上是连续的,那么登录后,同步一次数据就可以保证与后续转发的数据无缝衔接;

2.3 优化解决方法

那么针对2种方案时候有优化的方案呢?矫正后的算法对私聊和群聊都有效,原理是执行有限次同步以便在时间上覆盖所有范围:

3) 时间戳矫正法:

小美在服务器B登录,就绪后将状态广播到集群,之后开始同步群G100的历史数据,记录下同步到的最后一条消息的ID;假设同步的最新一条数据编号LAST_ID=1000200;(真实环境使用雪花算法)

这个LAST_ID本质上记录的是同步点;同步点仅仅随着同步查询动作而更新;

可能一:服务器A早就发现服务器B有群组G100其他用户,一直在转发数据,那么小美不会丢失数据,因为是流程是先设置状态后同步数据,服务器B可以保证消息没有丢失;对于同步前收到的数据,客户端先写到本地库,同步数据完成后再显示就不会乱序;

可能二:

小美开始是离线状态,等到小美上线服务器B,将状态发布到集群;服务器A收到群组G100到服务器B的路由;此时服务器A针对此路由,应当记录一个发现路由的时间戳(START_TM),并在在此后所有针对此路由的转发的消息都需要带上这个时间戳START_TM,含义是从此时刻起开始转发消息;(加入针对这个路由发送的第一个消息ID为 1000500,这个时间戳可以设置为发现路由后转发的第一条消息ID);

服务器B收到消息后,比对时间戳,如果 LAST_ID >= START_TM 则说明同步的的时间范围与开始转发的时间没有时间差;(在可能一中,也是满足这个不等式)。

如果 LAST_ID < START_TM 则说明存在时间差,有丢失消息风险,应该按照范围再1次执行同步数据,这样就能保证消息不丢失。同步消息后更新LAST_ID,含义是同步点可以标记到当前位置。

后续,假如有服务器C转发过来数据,也是同样大道理: 因为消息ID虽然不连续,但是雪花算法单调递增,而且里面包含了时间戳;

只要同步点晚于路由发现时间,就可以保证消息没有遗漏。

在这里插入图片描述

当服务器B上所有的关于群组G100的用户都离线后,则不需要服务器A转发数据了,则删除该路由。

相关代码:

// 发送方
type RouteData struct{MemCount int64  // 当前服务器上群组活动人员数量StartTm  int64  // 发现路由的时间戳,
}// 在群组中添加2个映射记录数据
type Group struct{GroupId  int64...RouteMap     map[string]*RouteData  // 发方:发现到某路由时候设置时间戳}
// 收方:
// 由于用户支持多终端同时在线,所以路由其实记录的用户的会话,而不是用户本身,有可能出现同一个用户登录到不同的主机上;
type Session struct{Sid  int64...GroupSynId map[int64]int64        // 收方:每个组同步操作得到的位置:groupId ->  LAST_ID
}

当服务器B有群组G100的用户时,会记录如下

//lock
group.RouteMap["serverB"] = &RouteData{MemCount: 1,StartTm:  1000500,
}

当路由消失后,则删除此路由;

针对私聊采用类似的策略:

其中,有可能出现同一个用户登录到不同的主机上;

type SessionOnserverData struct{    // 每个会话在哪个服务器上,记录首次发现路由的时间SessionList  []int64StartTm int64
}// 有可能该好友的会话分布在多种终端,但是按照算法大多在同一个服务器
type UserRouteData struct{SessionOnServerMap  map[string]*SessionOnserverData   // 服务器——>会话列表}type User struct{UserId int64...FriendRoute map[int64]*UserRouteData  // 针对好友的路由,UID-> 路由信息
}
// 接收方,在会话中记录好友发来的最后的消息的LAST_ID,
type Session struct{Sid  int64..LastSynPoint int64  //会话已经完成同步最新的ID,因为所有消息都存在在一起,不用区分好友
}

从上面可以总结:

收方记录的同步点是基于队列的;

群聊的路由发现是以服务器为单位执行转发;(减少处理的复杂度)

私聊的路由发现是基于服务器为单位执行转发;

2.4 收方消息处理

收方如果从消息队列拿到数据后,直接在线程池中处理,会造成用户数据的并发冲突,我们这里针对每个用户需要线性处理;

合适的方式是将消息分发到各个会话的消息缓存队列中,由会话的读协程来处理这个内容;

完。

这篇关于BirdTalk IM集群中消息流转策略讨论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1081720

相关文章

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

SpringCloud整合MQ实现消息总线服务方式

《SpringCloud整合MQ实现消息总线服务方式》:本文主要介绍SpringCloud整合MQ实现消息总线服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、背景介绍二、方案实践三、升级版总结一、背景介绍每当修改配置文件内容,如果需要客户端也同步更新,

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Redis高可用-主从复制、哨兵模式与集群模式详解

《Redis高可用-主从复制、哨兵模式与集群模式详解》:本文主要介绍Redis高可用-主从复制、哨兵模式与集群模式的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录Redis高可用-主从复制、哨兵模式与集群模式概要一、主从复制(Master-Slave Repli

一文带你搞懂Redis Stream的6种消息处理模式

《一文带你搞懂RedisStream的6种消息处理模式》Redis5.0版本引入的Stream数据类型,为Redis生态带来了强大而灵活的消息队列功能,本文将为大家详细介绍RedisStream的6... 目录1. 简单消费模式(Simple Consumption)基本概念核心命令实现示例使用场景优缺点2

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命