深度学习 --- stanford cs231学习笔记四(训练神经网络的几个重要组成部分之一,激活函数)

本文主要是介绍深度学习 --- stanford cs231学习笔记四(训练神经网络的几个重要组成部分之一,激活函数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

训练神经网络的几个重要组成部分 一

1,激活函数(activation functions)

激活函数是神经网络之于线性分类器的最大进步,最大贡献,即,引入了非线性。这些非线性函数可以被分成两大类,饱和非线性函数和不饱和非线性函数。


1,1 饱和非线性函数

1,1,1  Sigmoid

原函数:

sigmoid(x)=(1+e^{-1})^{-1}

函数的导数: 

sigmoid(x)'=sigmoid(x)*(1-sigmoid(x))

sigmoid函数的性质:

        结合指数函数的图像可知,当x<0时,-x>0,指数函数随着x的减小而增大,当x=-10时,几乎exp(-(-10))=exp(10),约等于2W2,如果x再继续小下去sigmoid的分母就变成无穷大了,此时sigmoid趋近于0。即,当x<0时,随着x越来越小,sigmoid函数越来越趋近于0。

when\; x<0\Rightarrow-x>0\Rightarrow exp(-x)>0\Rightarrow \lim_{x \to -\infty }exp(-x)=+\infty \Rightarrow sigmoid(x)=0

        反之,当x>0时,-x<0,指数函数随着x的增大而减小,当x=10时,几乎exp(-(10))=exp(-10),约等于0,如果x再增加下去sigmoid的分母就变成1了,此时sigmoid趋近于1/1=1。即,当x>0时,随着x越来越大,sigmoid函数越来越趋近于1。

when\; x>0\Rightarrow-x<0\Rightarrow exp(-x)<0\Rightarrow \lim_{x \to +\infty }exp(-x)=0 \Rightarrow sigmoid(x)=1

函数值始终为正,且不关于0对称。

 sigmoid函数的缺点:梯度消失

在计算损失函数L关于x的梯度时,不论上游梯度传过来的是什么,sigmoid函数的本地梯度为:

sigmoid(x)'=sigmoid(x)(1-sigmoid(x))

因此,当x过大时,sigmoid的值为1,1-sigmoid为0,则,本地梯度为0。当x过小时,sigmoid的值为0,同样会导致本地梯度为0。如此一来,损失函数L就无法通过梯度下降法去更新W。

        当然sigmoid函数还有其他问题,例如,均值不为0,和输出总是正数,这会导致梯度下降时的zig-zag问题,也就是梯度下降速度慢的问题。但相对于梯度消失这个最为严重的问题,可忽略不计。


1,1,2 Tanh(x)双曲正切函数

        双曲正切函数有点像是sigmoid函数经过整体向下平移后得到的函数。 

原函数:

tanh(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}

函数的导数: 

tanh(x)'=1-(tanh(x))^{2}

函数的特点:

        函数的值域为-1~1,输出有正有负,均值为0,即函数值关于0对称。从一定程度上弥补了sigmoid函数的不足。

函数的缺点:梯度消失

已知双曲正切的函数为: 

tanh(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}

他所对应的导数为: 

\frac{\partial tanh(x)}{\partial x}=1-(tanh(x))^{2}

该导数作为本地梯度,当x较大时,tanh(x)=1,平方后仍然为1,上面的导数为1-1=0。

当x较小时,tanh(x)=-1,平方后为1,导数为0。

这也就是说,双曲正切函数仍然会有梯度消失的问题,也就是梯度为0的问题

饱和非线性函数的小结: 

         饱和非线性函数在神经网络中指的是那些在输入值非常大或非常小时,其输出值趋于某个常数值的激活函数,也就是说他不能很好的保持x的原貌。常见函数有sigmoid和tanh。


1,2 不饱和非线性函数 

1,2,1 ReLU激活函数(Rectified Linear Unit)

原函数:

\begin{cases} ReLU(x)=0& x<=0\\ ReLU(x)=x & x>0 \end{cases}

函数的导数: 

\begin{cases} ReLU(x)'=0& x<=0\\ ReLU(x)'=1 & x>0 \end{cases}

ReLU函数的特性:

        1,不同于sigmoid和tanh,对于大于0的输入,在前向传播的过程中ReLU会使得输出等于输入,而不是把任何输入都限制在一个比较狭窄的值域内

        2,计算速度非常快,只需对输入x做一个判断。

        3,学习效率高,迭代速度快。

函数的问题:

\begin{cases} ReLU(x)'=0& x<=0\\ ReLU(x)'=1 & x>0 \end{cases}

        结合该函数的梯度来看,当x<0时,会出现本地梯度为0。如此一来,无论上游梯度传过来的是什么,最终结果都是0,使得梯度无法更新。也就说,ReLU函数依然存在梯度消失的问题。

        值得一提的是ReLU函数在著名的AlexNet中被首次提出,这也可以说是这篇paper最重要的贡献之一。ReLU的出现使得训练时的迭代速度比tanh快了接近6倍。


1,2,2 Leaky ReLU

         为了克服ReLU函数中,当x为负值时,梯度直接为0的情况,leaky ReLU使得x为负数时,依然会保留一个较小的梯度,这个值很小但不为0。

原函数:

\begin{cases} f(x)=\alpha x& x<=0\\ f(x)=x & x>0 \end{cases}

函数的导数: 

\begin{cases} f(x)'=\alpha & x<=0\\ f(x)'=1 & x>0 \end{cases}

函数的特性:

        1.  x > 0时:Leaky ReLU的输出等于输入,导数为1。

        2. x <= 0时:输出是输入乘以一个小于一的系数,导数为该系数。使得x为负时,避免了梯度为0的情况,依然可以跟新W。

函数存在的问题:

        虽然有非零梯度,但负值区间的梯度较小,导致该区间的权重更新速度较慢。


1,2,3 ELU

         ELU函数是ReLU函数更进一步的改进版。

原函数:

\begin{cases} f(x)=\alpha (e^{x}-1)& x<=0\\ f(x)=x & x>0 \end{cases}

函数的导数: 

\begin{cases} f(x)'=\alpha e^{x}& x<=0\\ f(x)'=1 & x>0 \end{cases}

函数的特性:

        1.  x > 0时:与Leaky ReLU相同。

        2. x <= 0时:导数恒为正,同样避免了梯度为0的情况,可以跟新W。


1,2,4 SELU


1,2,5 GELU


1,3 summary of activation functions

        在上面关于不饱和激活函数的介绍我到后面就懒得写了,主要原有是因为下面这个PPt中的结论。这个作者在三个著名的网络中,分别使用了不同的不饱和激活函数并比较了准确率。可见,ReLU函数在这三组实验中的表现并不俗,和表现最好的其他激活函数比也就相差了不到1%的准确率。但ReLU函数的计算确是最简单了,计算速度最快的。做到这里还得是人家AlexNet的作者Alex牛,ReLU函数就在在这篇文章中被首次提及并成功运用的。他的出现几乎彻底取代了原有的sigmoid函数和tanh函数。

         结合上面所说的,cs231n给出了如下建议:

1,在选择activation function时,不要太过纠结,直接无脑的使用ReLU就好,只是要明白为什么。

2,如果你想追求更好效果,即,更高准确率,可是试试其他激活函数。但不要用sigmoid和tanh。

3,在一些非常非常新的模型中可能会用到GeLU。


(全文完) 

--- 作者,松下J27

 参考文献(鸣谢): 

1,Stanford University CS231n: Deep Learning for Computer Vision

2,训练神经网络(第一部分)_哔哩哔哩_bilibili

3,10 Training Neural Networks I_哔哩哔哩_bilibili

4,Schedule | EECS 498-007 / 598-005: Deep Learning for Computer Vision 

版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27

这篇关于深度学习 --- stanford cs231学习笔记四(训练神经网络的几个重要组成部分之一,激活函数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081713

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法