threejs 光影投射-与场景进行交互(六)

2024-06-21 14:52

本文主要是介绍threejs 光影投射-与场景进行交互(六),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

效果

场景中有三个立方体,三种颜色.点击变成红色,再点恢复自身原有颜色
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

代码

import './style.css'
import * as THREE from 'three'
import { OrbitControls } from 'three/examples/jsm/controls/OrbitControls.js'
import { log } from 'three/examples/jsm/nodes/Nodes.js'//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓创建场景
const scene = new THREE.Scene()
// 在场景中添加坐标辅助器
const axesHelper = new THREE.AxesHelper(10)//数据表示坐标轴的长度
scene.add(axesHelper)//将坐标轴添加到场景中
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑创建场景//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓创建透视相机
const camera = new THREE.PerspectiveCamera(45,//视角,可视范围window.innerWidth / window.innerHeight,//摄像机的宽高比0.1,//摄像机最近能看到的距离1000//摄像机最远能看到的距离
)
// 设置相机的位置
camera.position.x = 8
camera.position.y = 8
camera.position.z = 8
camera.lookAt(0, 0, 0)//摄像机的朝向
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑创建透视相机//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓创建渲染器
const renderer = new THREE.WebGLRenderer()
renderer.setSize(window.innerWidth, window.innerHeight)//渲染器的尺寸大小
document.body.appendChild(renderer.domElement)//renderer.domElement就是canvas元素
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑创建渲染器//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓添加轨道控制器
// 添加相机轨道控制器
const controls = new OrbitControls(camera, renderer.domElement)
controls.enableDamping = true //打开惯性阻尼
controls.dampingFactor = 0.05//阻尼系数
controls.autoRotate = false//是否自动旋转(围绕着lookAt的坐标旋转)
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑添加轨道控制器//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓光影投射
// 创建几个正方体
const cube1 = new THREE.Mesh(new THREE.BoxGeometry(1, 1, 1), new THREE.MeshBasicMaterial({ color: new THREE.Color('pink') }))
cube1.position.set(5, 0, 0)
scene.add(cube1)const cube2 = new THREE.Mesh(new THREE.BoxGeometry(1, 1, 1), new THREE.MeshBasicMaterial({ color: new THREE.Color('blue') }))
cube2.position.set(0, 0, 0)
scene.add(cube2)const cube3 = new THREE.Mesh(new THREE.BoxGeometry(1, 1, 1), new THREE.MeshBasicMaterial({ color: new THREE.Color('yellowgreen') }))
cube3.position.set(-5, 0, 0)
scene.add(cube3)const raycaster = new THREE.Raycaster()// 创建射线
const mouse = new THREE.Vector2()// 创建鼠标向量
window.addEventListener('click', (e) => {// 这里的公式是一个用来将 clientX 或 clientY 坐标转换为范围从 -1 到 1 的坐标的公式mouse.x = (e.clientX / window.innerWidth) * 2 - 1mouse.y = -((e.clientY / window.innerHeight) * 2 - 1)raycaster.setFromCamera(mouse, camera)// 通过摄像机和鼠标位置更新射线// const intersects = raycaster.intersectObjects(scene.children)// 计算物体和射线的焦点const intersects = raycaster.intersectObjects([cube1, cube2, cube3])// 计算物体和射线的焦点// intersects.length>0表示射线碰到物体if (intersects.length > 0) {if (intersects[0].object.isSelect) {intersects[0].object.material.color.set(intersects[0].object.baseColor)intersects[0].object.isSelect = falsereturn}intersects[0].object.isSelect = trueintersects[0].object.baseColor = intersects[0].object.material.color.getHex()intersects[0].object.material.color.set(0xff0000)}console.log('===================================点击事件开始');console.log(`点击事件相对于window的位置坐标(${e.clientX},${e.clientY})`);console.log(`点击事件转换后的位置坐标(${mouse.x},${mouse.y})`);console.log('获取的物体与射线的焦点信息', intersects);console.log('===================================点击事件结束');
})//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑光影投射//↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓渲染
window.addEventListener('resize', () => {camera.aspect = window.innerWidth / window.innerHeight//重置相机的宽高比camera.updateProjectionMatrix()//更新相机的投影矩阵renderer.setSize(window.innerWidth, window.innerHeight)//重置渲染器的宽高比
})function animate() {controls.update()renderer.render(scene, camera)//渲染=相机+场景requestAnimationFrame(animate)//下一帧继续调用渲染函数
}
animate()
//↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑渲染

这篇关于threejs 光影投射-与场景进行交互(六)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081532

相关文章

vue监听属性watch的用法及使用场景详解

《vue监听属性watch的用法及使用场景详解》watch是vue中常用的监听器,它主要用于侦听数据的变化,在数据发生变化的时候执行一些操作,:本文主要介绍vue监听属性watch的用法及使用场景... 目录1. 监听属性 watch2. 常规用法3. 监听对象和route变化4. 使用场景附Watch 的

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

Spring Security 前后端分离场景下的会话并发管理

《SpringSecurity前后端分离场景下的会话并发管理》本文介绍了在前后端分离架构下实现SpringSecurity会话并发管理的问题,传统Web开发中只需简单配置sessionManage... 目录背景分析传统 web 开发中的 sessionManagement 入口ConcurrentSess

99%的人都选错了! 路由器WiFi双频合一还是分开好的专业解析与适用场景探讨

《99%的人都选错了!路由器WiFi双频合一还是分开好的专业解析与适用场景探讨》关于双频路由器的“双频合一”与“分开使用”两种模式,用户往往存在诸多疑问,本文将从多个维度深入探讨这两种模式的优缺点,... 在如今“没有WiFi就等于与世隔绝”的时代,越来越多家庭、办公室都开始配置双频无线路由器。但你有没有注

MySQL进行分片合并的实现步骤

《MySQL进行分片合并的实现步骤》分片合并是指在分布式数据库系统中,将不同分片上的查询结果进行整合,以获得完整的查询结果,下面就来具体介绍一下,感兴趣的可以了解一下... 目录环境准备项目依赖数据源配置分片上下文分片查询和合并代码实现1. 查询单条记录2. 跨分片查询和合并测试结论分片合并(Shardin