关于椭圆的方程(有Python画的动图)

2024-06-21 11:36
文章标签 python 方程 动图 椭圆

本文主要是介绍关于椭圆的方程(有Python画的动图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于椭圆的方程(有Python画的动图)

flyfish
在这里插入图片描述

几何定义

椭圆是平面上所有到两个固定点(焦点)的距离之和为常数的点的集合。这两个固定点叫做焦点。

解析几何描述

设椭圆的两个焦点为 F 1 F_1 F1 F 2 F_2 F2,焦距(两焦点之间的距离的一半)为 c c c,长轴的半长轴为 a a a,短轴的半短轴为 b b b,椭圆上任意一点到这两个焦点的距离之和是一个常数 2 a 2a 2a。如果椭圆的中心在原点,长轴平行于 x x x 轴,则椭圆的标准方程为: x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 a2x2+b2y2=1如果长轴平行于 y y y 轴,只需交换 a a a b b b 的位置: x 2 b 2 + y 2 a 2 = 1 \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 b2x2+a2y2=1

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.animation import FuncAnimation, PillowWriterdef plot_ellipse_with_moving_point(a, b, num_frames=100, interval=50):# 椭圆方程参数theta = np.linspace(0, 2 * np.pi, num_frames)x = a * np.cos(theta)y = b * np.sin(theta)# 焦点位置c = np.sqrt(a**2 - b**2)F1 = (-c, 0)F2 = (c, 0)# 创建图形fig, ax = plt.subplots(figsize=(8, 6))ax.plot(x, y, label=f'Ellipse: $\\frac{{x^2}}{{{a}^2}} + \\frac{{y^2}}{{{b}^2}} = 1$')ax.scatter(*F1, color='red')ax.scatter(*F2, color='red')ax.text(F1[0], F1[1], 'F1', fontsize=12, ha='right')ax.text(F2[0], F2[1], 'F2', fontsize=12, ha='left')ax.axhline(0, color='black', linewidth=0.5)ax.axvline(0, color='black', linewidth=0.5)ax.grid(color='gray', linestyle='--', linewidth=0.5)ax.set_aspect('equal', adjustable='box')ax.set_title('Ellipse with Moving Point')ax.set_xlabel('x')ax.set_ylabel('y')ax.legend()# 初始化点 P 和连接线point, = ax.plot([], [], 'bo')line1, = ax.plot([], [], 'gray', linestyle='dotted')line2, = ax.plot([], [], 'gray', linestyle='dotted')# 初始化函数def init():point.set_data([], [])line1.set_data([], [])line2.set_data([], [])return point, line1, line2# 更新函数def update(frame):P = (a * np.cos(theta[frame]), b * np.sin(theta[frame]))point.set_data([P[0]], [P[1]])line1.set_data([F1[0], P[0]], [F1[1], P[1]])line2.set_data([F2[0], P[0]], [F2[1], P[1]])return point, line1, line2# 创建动画ani = FuncAnimation(fig, update, frames=num_frames, init_func=init, interval=interval, blit=True)# 保存动画ani.save('ellipse_with_moving_point.gif', writer=PillowWriter(fps=20))plt.show()# 参数
a = 5
b = 3
plot_ellipse_with_moving_point(a, b)

这篇关于关于椭圆的方程(有Python画的动图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081115

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.