日志分析(php+nosql+rsync+crontable)

2024-06-21 10:48

本文主要是介绍日志分析(php+nosql+rsync+crontable),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

是不是常常要分析用户的行为?是不是常常遇到多台服务器上传的日志一起分析?是不是对数据统计的间隔时间要求很短?还有木有因为日志文件过大,而需要分块处理?

1、说明一点在日志写入的时候必须按照一种严格的格式,这样在做解析的时候,才好切割。比如 gameid:123  gameid:2333。切割统一标准就行。

2、在生成日志的文件名的时候也要按照一定规则,在分析的时候,正则表达式好匹配,如 服务器hostname_date.log  这样在匹配的时候 只需要 glob(*—date.log); //glob 见php函数手册,寻找与模式匹配的文件路径。

3、为什么要用nosql?其实工程师不是仅仅局限于知道怎么实现,而是要多思考什么样的业务用什么样的工具来解决。非关系型数据很适合这种,日志中常常加入新的行为,你用key-value的方式,不需要日志新增了要分析的行为,你就得手动改变你程序的配置,这样我个人觉得不是太好。~假如用mysql,你纵向设计数据库,

结构: id gameid count createtime

          1   1001    3000  2013-03-23  12:22:21

          2   1002   2222   2013-03-23  12:22:21

        ………………

这样设计的话那么不会因为新增gameid来修改数据表,这样有什么坏处?那就是每次插入数据很多,假如30秒插入一次,一次插入30个游戏的统计值,那么一天的增量  2*30*60*24 = 86400 条数据,这样显然不合理。

那么横向设计,一次插入一条数据。

id gameid_1001 gameid_1002 gameid_1003 …… createtime 

1  3000             2222             40000               2013-03-23 09:08:56

2  4000             1800             4000                2013-03-23 09:09:20

……

 这样的坏处是 每次新增了游戏ID 那么就得改变数据表结构,加字段,当然你牛逼点的可以全部用程序来实现,但是这样我觉得不太好。

mongo中有这个内嵌文档,很爽。推荐使用hadoop

存储结构如下

        +{

            "_id":3e3ess3sazxcdsdsfdf,

            "createtime":"2013-03-23 09:13:02",

            "data":{

                    "gameid_1001": 2000,

                    "gameid_1002": 3000,

                    ……

                      }


        }

一次只插入一条数据,新增游戏类型不需要做任何改变,perfect~

4、为什么要用rsync?将多台服务器的日志同步到一个目录下,一起处理,比较方便。

5、需要用到的几个函数,glob, fopen,fget,isset,explode

程序最好不要写得很死板,

 批量读入日志文件

$sLogfileName = '/path/../*_date.log';

$aLogfileName = glop($sLogfileName); // 匹配要处理的日志文件,读入数组中。

……

fopen();

while() //用while循环,处理完文件中的一行数据再去文件中取,如果用foreach一次读入数组,内存会溢出。

{

……

}

……

$aCountResult = array();

$iNum = 100;

if(isset($aCountResult[$iGameId]))

        $aCountResult[$iGameId] = (int)$aCountResult[$iGameId] + $iNum;

else

        $aCountResult[$iGameId] = $iNum;

……

统计完插入。。

然后加入计划程序中,ok。。

主要还是不同的业务用不同的方法解决。

@update 2013-3-25 21:31:45

在日志分析中 \n 是一个很重要的切割符,避免防止内存溢出,不要以 \n

EOF 作为切割符,同事要严格按照日志标准格式写入,这样在解析的时候比较好解析。用fgets方式获取,不能一次读入内存中。

这篇关于日志分析(php+nosql+rsync+crontable)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1081010

相关文章

java -jar example.jar 产生的日志输出到指定文件的方法

《java-jarexample.jar产生的日志输出到指定文件的方法》这篇文章给大家介绍java-jarexample.jar产生的日志输出到指定文件的方法,本文给大家介绍的非常详细,对大家的... 目录怎么让 Java -jar example.jar 产生的日志输出到指定文件一、方法1:使用重定向1、

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

nginx配置错误日志的实现步骤

《nginx配置错误日志的实现步骤》配置nginx代理过程中,如果出现错误,需要看日志,可以把nginx日志配置出来,以便快速定位日志问题,下面就来介绍一下nginx配置错误日志的实现步骤,感兴趣的可... 目录前言nginx配置错误日志总结前言在配置nginx代理过程中,如果出现错误,需要看日志,可以把

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比