文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于IGDT-效用熵的园区综合能源系统优化配置方法》

本文主要是介绍文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于IGDT-效用熵的园区综合能源系统优化配置方法》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇论文的核心内容是提出并研究了一种基于信息间隙决策理论(IGDT)-效用熵的园区综合能源系统(PIES)优化配置方法。以下是论文的主要内容概述:

  1. 研究背景:随着中国“双碳”目标的提出,推动能源系统低碳转型变得尤为重要。园区综合能源系统(PIES)作为能源系统的重要组成部分,其优化配置对于提高系统的鲁棒性,即应对不确定性波动的适应性具有重要意义。

  2. 研究问题:PIES在参与碳交易时面临碳交易价格、能源价格的长期不确定性,以及可再生能源短期不确定性的挑战。研究如何在有限的总成本预算下优化配置PIES各设备容量,提高系统对不确定性波动的适应性。

  3. 研究方法:论文首先建立了基于能源集线器的多能流与碳交易量耦合模型,描述碳交易量与多能流间的耦合关系。然后,采用IGDT处理碳交易价格与能源价格的长期不确定性,利用效用熵模拟风光出力的短期不确定性。

  4. 优化配置模型:在确定性模型的基础上,考虑PIES决策者可接受的额外投资能力,确定总成本预算限额。引入鲁棒性系数描述PIES对不确定性波动的适应性,建立以最大化鲁棒性系数为目标的优化配置模型。

  5. 算例分析:以中国北方某PIES为例,通过不同场景的对比分析,验证了所提优化配置方法的有效性。结果表明,该方法可以有效提高PIES的鲁棒性,降低不确定性波动造成的经济损失。

  6. 研究结论:论文提出的基于IGDT-效用熵的PIES优化配置方法,可以在保证经济性的同时,提高PIES对不确定性波动的适应性,对于实现能源系统的低碳转型具有重要的理论和实践意义。

  7. 关键词:园区综合能源系统;优化配置;碳交易;不确定性;信息间隙决策理论。

论文的主要贡献在于提出了一种新的PIES优化配置方法,该方法考虑了长期和短期不确定性因素,并通过IGDT和效用熵对这些不确定性进行了量化和优化处理,为实现PIES的低碳、高效和鲁棒运行提供了理论支持和实践指导。

根据论文摘要与仿真算例的描述,以下是仿真复现的思路和程序语言的概念性表示(使用Python语言):

仿真复现思路:

  1. 数据准备:收集或生成所需的气象数据(如光照强度、风速)以及能源价格和碳交易价格数据。

  2. 模型建立:根据论文中描述的多能流与碳交易量耦合模型,建立PIES的数学模型,包括能量转换设备模型、储能模型、可再生能源模型等。

  3. 不确定性建模:使用IGDT方法处理长期不确定性(如碳交易价格和能源价格),使用效用熵方法处理短期不确定性(如风光出力)。

  4. 优化配置:建立优化配置模型,包括目标函数和约束条件,使用混合整数线性规划(MILP)方法求解。

  5. 鲁棒性分析:通过改变总成本预算限额和效用熵限值系数,分析PIES配置方案的鲁棒性。

  6. 结果分析:对比不同场景下的规划结果,评估所提方法对提高PIES鲁棒性的效果。

程序语言概念性表示(Python):

# 导入所需的库
import pandas as pd
import numpy as np
from scipy.optimize import linprog
import matplotlib.pyplot as plt# 数据准备
# 读取或生成气象数据和价格数据
# 例如:df_weather = pd.read_csv('weather_data.csv')
# df_prices = pd.read_csv('energy_prices.csv')# 定义设备参数和模型
class PIES_System:def __init__(self, equipment_params, weather_data, price_data):self.equipment_params = equipment_paramsself.weather_data = weather_dataself.price_data = price_datadef energy_hub_model(self):# 建立基于能源集线器的多能流与碳交易量耦合模型passdef uncertainty_modeling(self, igdt_params, utility_entropy_params):# 使用IGDT和效用熵对不确定性进行建模passdef optimization_model(self, budget_limit, robustness_coefficient):# 建立优化配置模型并求解# 此处使用线性规划作为示例c = np.array([...])  # 目标函数系数A_ub = np.array([...])  # 约束条件b_ub = np.array([...])res = linprog(c, A_ub=A_ub, b_ub=b_ub, method='highs')return res.x, res.fundef robustness_analysis(self, scenarios):# 鲁棒性分析passdef result_analysis(self, configurations):# 结果分析pass# 主函数
def main():# 初始化PIES系统equipment_params = {...}  # 设备参数weather_data = {...}  # 气象数据price_data = {...}  # 价格数据pies_system = PIES_System(equipment_params, weather_data, price_data)# 建模和优化配置igdt_params = {...}  # IGDT参数utility_entropy_params = {...}  # 效用熵参数budget_limit = ...  # 总成本预算限额robustness_coefficient = ...  # 鲁棒性系数pies_system.uncertainty_modeling(igdt_params, utility_entropy_params)configurations, total_cost = pies_system.optimization_model(budget_limit, robustness_coefficient)# 鲁棒性分析scenarios = [...]  # 不同场景pies_system.robustness_analysis(scenarios)# 结果分析pies_system.result_analysis(configurations)if __name__ == "__main__":main()

请注意,上述代码仅为概念性描述,并非完整的可执行程序。实际编程时需要根据具体的优化问题和约束条件来实现相应的优化算法,以及详细的系统模型参数和求解器调用。此外,还需要实现数据读取、模型建立、结果分析和可视化等功能。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

null电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《基于IGDT-效用熵的园区综合能源系统优化配置方法》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080853

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

SpringBoot中配置文件的加载顺序解读

《SpringBoot中配置文件的加载顺序解读》:本文主要介绍SpringBoot中配置文件的加载顺序,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot配置文件的加载顺序1、命令⾏参数2、Java系统属性3、操作系统环境变量5、项目【外部】的ap

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.