2019目前为止深度学习的最佳研究,有论文有代码!

2024-06-21 09:32

本文主要是介绍2019目前为止深度学习的最佳研究,有论文有代码!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


者:ODSC

编译:ronghuaiyang

导读

在本文中,我将帮助你节省一些时间,方法是将2019年迄今为止发表的研究成果整理成以下可管理的短列表。


640?wx_fmt=png

我们即将完成2019年第一季度的工作,而深度学习技术的研究正以非常快的速度向前推进。我经常会查看一下人工智能研究人员的工作,以便了解这项技术的发展方向。这样使我能够更好地优化我的时间,以确保我知道我所不知道的。因此,我还试着在一个可能有数百或数千篇论文的领域,每周至少阅读一篇研究论文。

在本文中,我将帮助你节省一些时间,方法是将2019年迄今为止发表的研究成果整理成以下可管理的短列表。我做了一些过滤,这样就只包括具有相关GitHub repo的论文了。希望你喜欢!

Fast Graph Representation Learning with PyTorch Geometric

论文:https://arxiv.org/abs/1903.02428v2

代码:https://github.com/rusty1s/pytorch_geometry

本研究介绍了PyTorch Geometric,这是一个基于PyTorch的用于对不规则结构的输入数据(如图、点云和流形)进行深度学习的库。除了一般的图形数据结构和处理方法外,它还包含了关系学习和三维数据处理领域中最近发表的各种方法。PyTorch几何通过使用稀疏的GPU加速、提供专用的CUDA内核以及为不同大小的输入示例引入高效的小型批处理来实现高数据吞吐量。

Mask Scoring R-CNN

论文:https://arxiv.org/abs/1903.00241v1

代码:https://github.com/zjhuang22/maskscoring_rcnn

在实例分割任务中,大多数实例分割框架都使用实例分类的置信度作为掩码分数。本文研究了这一问题,提出了包含网络块的Mask score R-CNN来学习预测实例掩码的分数。掩码评分策略校准了掩码质量掩码评分之间的不匹配,并通过在COCO AP评估期间优先考虑更准确的掩码预测来提高实例分割性能。

High-Fidelity Image Generation with Fewer Labels

论文:https://arxiv.org/abs/1903.02271v1

代码:https://github.com/google/compare_gan

深度生成模型正在成为现代机器学习的基石。最近关于条件生成对抗网络(GANs)的研究表明,在自然图像上学习复杂的高维分布是可以实现的。虽然最新的模型能够在高分辨率下生成高保真度、多样化的自然图像,但它们依赖于大量的标记数据。这篇论文展示了一个人如何从最近的研究中受益于自我和半监督学习,从而在无监督的图像集合成和条件设置方面都优于业界最优(SOTA)。

GCNv2: Efficient Correspondence Prediction for Real-Time SLAM

论文:https://arxiv.org/abs/1902.11046v1

代码:https://github.com/jiexiong2016/GCNv2_SLAM

这篇文章提出了一种基于深度学习的关键字和描述符的生成网络GCNv2。GCNv2是在之前的方法GCN的基础上建立起来的,GCN是一个为三维投影几何而训练的网络。GCNv2设计了一个二进制描述符向量作为ORB特征,以便在诸如ORB- slam之类的系统中轻松替换ORB。

ALiPy: Active Learning in Python

论文:https://arxiv.org/abs/1901.03802v1

代码:https://github.com/NUAA-AL/ALiPy

有监督的机器学习方法通常需要大量带标签的例子来进行模型训练。然而,在许多实际应用中,有大量的未标注数据,但标注数据有限,而且获取标注的成本很高。主动学习 (AL)通过迭代地选择最有价值的数据来从标注器中查询它们的标签,从而降低了标注成本。本文介绍了一个用于主动学习的Python toobox ALiPy。

DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images

论文:https://arxiv.org/abs/1901.07973v1

代码:https://github.com/switchablenorms/DeepFashion2

通过带有丰富标注的基准测试如DeepFashion,其标签包括服装类别、特征点和消费-商业图像对,可以提高对时尚图像的理解。然而,DeepFashion有一些不可忽视的问题,比如每张图片只有一件衣服,稀疏的特征点(只有4~8个),没有每个像素的掩模,这与现实场景有很大的差距。本文通过提出DeepFashion2来解决这些问题,从而填补了这一空白。它是一个通用的基准测试,包括四个任务,包括服装检测,姿态估计,分割和检索。

The StarCraft Multi-Agent Challenge

论文:https://arxiv.org/abs/1902.04043v2

代码:https://github.com/oxwhirl/smac

近年来,深度多智能体强化学习(RL)已成为一个非常活跃的研究领域。在这一领域,一个特别具有挑战性的问题类别是部分可观察到的、合作的、多智能体学习,在这种学习中,智能体团队必须学会协调他们的行为,同时只以他们的私人观察为条件。这是一个有吸引力的研究领域,因为这类问题涉及大量的实际系统,而且比一般问题更易于评估。ALE和MuJoCo等标准化环境允许单代理RL超越网格世界等玩具领域。然而,对于协作多代理RL,没有可比的基准。因此,这一领域的大多数论文都使用一次性的玩具问题,很难衡量真正的进展。本文将星际争霸多智能体挑战(SMAC)作为一个基准问题来填补这一空白。

Dropout is a special case of the stochastic delta rule: faster and more accurate deep learning

论文:https://arxiv.org/abs/1808.03578v2

代码:https://github.com/noahfl/sdr-densenet-pytorch

多层神经网络在文本、语音和图像处理等多种基准测试任务中取得了显著的成功。在分层模型中,非线性参数估计容易出现过拟合和误差。一种解决这些估计和相关问题(局部极小值、共线性、特征发现等)的方法称为Dropout。Dropout算法根据每次更新前概率为p的伯努利随机变量,删除隐藏的单元,从而对网络产生随机“冲击”,并在每次更新时对其进行平均。这篇论文表明,Dropout是一个更普遍的模型的特例,该模型最初发表于1990年,被称为“Stochastic Delta Rule”,或SDR。

Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling

论文:https://arxiv.org/abs/1902.08295v1

代码:https://github.com/tensorflow/lingvo

Lingvo是一个Tensorflow框架,为协作深度学习研究提供了一个完整的解决方案,特别关注于序列到序列模型。Lingvo模型由灵活且易于扩展的模块化构建块组成,实验配置是集中式的,可高度定制。该框架直接支持分布式训练和量化推理,它包含大量实用程序、辅助函数和最新研究思想的现有实现。在过去的两年里,Lingvo已经被数十名研究人员在20多篇论文中合作使用。本文概述了Lingvo的底层设计,并作为对框架各个部分的介绍,同时还提供了展示框架功能的高级特性的示例。

Adaptive Gradient Methods with Dynamic Bound of Learning Rate

论文:https://openreview.net/forum?id=Bkg3g2R9FX

代码:https://github.com/Luolc/AdaBound

自适应优化方法,如AdaGradRMSPropAdam已被提出,对每一个学习率使用单独的缩放来实现一个快速的训练过程。虽然这些方法很流行,但与SGD相比,它们的泛化能力较差,甚至由于不稳定和极端的学习速度而无法收敛。本文论证了极端的学习率会导致较差的表现。Adam和AMSGrad的新变种分别被称为AdaBoundAMSBound,它们利用学习率的动态边界实现了从自适应方法到SGD的渐进平稳过渡,并给出了收敛性的理论证明。对各种流行的任务和模型进行了进一步的实验。实验结果表明,新的变种能够消除自适应方法与SGD之间的泛化差距,同时在训练初期保持较高的学习速度。

640?wx_fmt=png— END—

英文原文:https://medium.com/@ODSC/best-deep-learning-research-of-2019-so-far-7bea0ed22e38

640?wx_fmt=jpeg

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧640?wx_fmt=gif

这篇关于2019目前为止深度学习的最佳研究,有论文有代码!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080840

相关文章

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析