两个让Transformer网络变得更简单,更高效的方法

2024-06-21 09:18

本文主要是介绍两个让Transformer网络变得更简单,更高效的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Sainbayar Sukhbaatar, Armand Joulin

编译:ronghuaiyang

导读

Transformer网络给深度学习的许多领域带来了巨大的进步,但它们在训练和推理过程中都非常需要计算资源,今天给大家带来两个使Transformer模型更简单、更高效的方法。

Transformer网络给深度学习的许多领域带来了巨大的进步,包括机器翻译、文本理解、语音和图像处理。尽管这些网络功能强大,但它们在训练和推理过程中都非常需要计算资源,这限制了它们的大规模的使用,尤其是对具有长期依赖关系的序列。Facebook人工智能的一项新研究正在寻找使Transformer模型更简单、更高效的方法。

为了更广泛地使用这种强大的深度学习体系结构,我们提出了两种新方法。第一,adaptive attention span,这是一个让Transformer网络对于长句子更有效率的方法。使用这种方法,我们能够在不显著增加计算时间或内存占用的情况下,将Transformer的注意广度增加到8000多个令牌。第二,all-attention layer,这是一种简化Transformer模型结构的方法。即使是一个简单得多的结构,我们的all-attention网络也可以匹配Transformer网络的性能上。我们认为,这项提高Transformer网络效率的工作是朝着使Transformer网络具有更广泛的应用迈出的重要一步。

Adaptive attention span

本研究的目的是使Transformer网络的计算效率更高,特别是在处理非常长的序列时。我们发现数据中的长期关系的需要更长的注意力的范围。然而,增加注意范围也会增加Transformer的计算时间和内存占用。

在我们对Transformer的实验中,我们发现并不是所有的注意力heads都充分利用了它们的注意范围。事实上,在一项字符级语言建模的任务中,大多数heads只使用了他们注意力范围的一小部分。如果我们能在训练中利用这一特性,我们就能显著减少计算时间和内存占用,因为两者都依赖于注意力范围的长度。不幸的是,我们不知道每个head的注意力范围是多少。在多次尝试启发式地设置注意范围之后,我们意识到,如果我们能从数据本身学到这一点,那是最好的。

由于注意范围是整数(因此是不可微的),我们不能像模型的其他参数那样通过反向传播直接学习它。但是,我们可以使用soft-masking函数将其转换为连续值。这个函数的值平滑地从1到0,这使得它可以对掩模长度求导。我们只需将这个掩模函数插入到每个注意力head中,这样每个head就可以根据数据确定不同的注意力范围。

640?wx_fmt=png

通过我们的自适应注意范围机制,我们设法将Transformer的注意范围提高到超过8000个tokens,而不会显著增加它的计算时间和内存占用。在字符级语言建模任务上,这导致了性能的提高,从而改进了现有技术的状态,使用了更少的参数。

640?wx_fmt=png

虽然模型中最长的注意力范围超过了8000步,但是平均的注意力范围只有200步左右,这使得模型运行起来更加高效。这反映在每一步的FLOPS上,这对于这些模型来说要小得多。在下面的图中,我们展示了一个这样的学习注意力范围,在一个12层的模型中,每层有8个heads。我们可以看到96个heads中只有5个有超过1000步的跨度。

640?wx_fmt=jpeg

我们已经发布了论文里的实验代码:https://l.facebook.com/l.php?u=https%3A%2F%2Fgithub.com%2Ffacebookresearch%2Fadaptive-span&h=AT3JCYNSm6Vd_t22nJUI6LUGDJXadI9sASr5E2KXFeVuzC0vkzMFavpGFZNTMFnHjw01Y18-M4TwVhUERft8vEhUI9ntCvHtatJ6M1ByU7ynviyVSDqvNbELeV_yYECjdz9SrJvYC_mxf4KVirIeXA由PyTorch实现,可以方便的集成到其他模型中。

All-attention layer

接下来,我们着重于简化Transformer网络的结构。Transformer由两个子层组成:自注意层和前馈层。虽然自注意层被认为是主要的组件,但是前馈子层对于高性能非常重要,这就是为什么它的大小通常设置为网络其他部分的四倍。

从表面上看,自我注意和前馈子层看起来非常不同。然而,一个简单的改变,前馈子层可以变成一个注意层。将ReLU非线性函数替换为softmax函数,可以将其激活解释为注意权值。此外,我们可以把第一个线性变换看作key向量,把第二个线性变换看作value向量。

利用这个解释,我们将前馈子层合并到自注意层,创建一个统一的注意层,我们称之为“all-attention”层。我们所要做的就是在一个自我注意层的key和value中添加一组额外的向量。这些额外的向量就和前馈子层的权值是一样的:固定的、可训练的和上下文无关的。相反,根据上下文计算的key和value会根据当前上下文动态更改。

640?wx_fmt=png

由于额外的向量可以充当一个前馈子层,并获取关于任务的一般知识,所以我们可以从网络中删除所有前馈子层。最终,我们的all-attention网络只是一堆全注意力层。在语言建模基准测试任务上,我们的all-attention网络与最先进的Transformer网络性能相当,并具有更简单的结构。我们希望这种简化的体系结构将为更好地理解和改进Transformer网络开辟道路。

640?wx_fmt=png

—END—

英文原文:https://ai.facebook.com/blog/making-transformer-networks-simpler-and-more-efficient/

640?wx_fmt=jpeg

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧640?wx_fmt=gif

这篇关于两个让Transformer网络变得更简单,更高效的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080817

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python