BiLSTM上的CRF,用命名实体识别任务来解释CRF(4)

2024-06-21 08:58

本文主要是介绍BiLSTM上的CRF,用命名实体识别任务来解释CRF(4),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:CreateMoMo

编译:ronghuaiyang

导读

今天给大家介绍一下具体的代码实现。

3 Chainer实现

在本节中,我将解释代码的结构。此外,还将给出实现CRF损失层的一个重要技巧。最后,会公布Chainer(2.0版)实现的源代码。

3.1 总体结构

可以看到,代码主要包括三个部分:初始化、损失计算和句子的预测标签。(完整的代码将在下一篇文章中发布)

class My_CRF():def __init__():#[Initialization]'''Randomly initialize transition scores'''def __call__(training_data_set):#[Loss Function]Total Cost = 0.0#Compute CRF Loss'''for sentence in training_data_set:1) The real path score of current sentence according the true labels2) The log total score of all the possbile paths of current sentence3) Compute the cost on this sentence using the results from 1) and 2)4) Total Cost += Cost of this sentence'''return Total Costdef argmax(new sentences):#[Prediction]'''Predict labels for new sentences'''
3.2 增加两个额外的标签(START和END)

如2.2节所述,在transition评分矩阵中,我们添加了两个START和END标签。当我们计算某句话的损失时,这将影响transition得分矩阵的初始化和emission得分矩阵的值。

[Example]

假设在我们的数据集中,我们只有一种类型的命名实体PERSON,因此我们实际上有三个标签(不包括开始和结束):B-PERSON、I-PERSON和O。

Transition得分举证

在添加了两个额外的标签(START和END)之后,当我们在init函数中初始化transition分数时,我们这样做:

n_label = 3 #B-PERSON, I-PERSON AND O
transitions = np.array(value, dtype=np.float32)

value的形状是(n_label + 2, n_label + 2),2是START和END的数量。另外,“value”的值是随机生成的。

Emission得分矩阵

你应该知道,BiLSTM层的输出是[2.1]中描述的句子的transition分数。例如,我们的句子有3个单词,BiLSTM的输出应该是这样的:

添加了额外的START和END标签后,emission分数矩阵为:

如上表所示,我们通过添加两个单词(start和end)及其对应的标签(START和END)来扩展排放emission矩阵。BiLSTM层的输出不包括新增单词的emission分数,但是我们可以手动指定这些分数(即 和)。单词“start”上的其他标签的emission分数应该是一个小的值(例如-1000)。如果你想再设置一个小的值,这是完全可以的,不会影响我们模型的性能。

3.3 更新整个结构

基于上面的解释,这里有一个更详细的伪代码:

class My_CRF():def __init__(n_label):#[Initialization]'''1) Randomly initialize transition score matrix.The shape of this matrix is (n_label+2, n_label+2).n_labels is the number of named entity classes in our dataset (e.g. B-Person, I-Person, O).2 is the number of our added labels (i.e. START and END).2) Moreover, we also set the small value as -1000 here.'''def __call__(training_data_set):#[Loss Function]Total Cost = 0.0#Compute CRF Lossfor sentence in training_data_set:'''1) Extend the emission score matrix by adding words(start and end)and adding labels(START and END)2) Compute the real path score of current sentence according thetrue labels (p 2.4)3) Compute the log total score of all the possbile paths of currentsentence (p 2.5)4) Compute the cost on this sentence using the results from 2)and 3) that is -(real_path_score - all_path_score). (p 2.5)5) Total Cost += the cost of current sentence'''return Total Costdef argmax(new sentences):#[Prediction]for sentence in new_sentences:'''1) Extend the emission score matrix by adding words(start and end)and adding labels(START and END)2) Predict the labels for the current new sentence (p 2.6)'''
3.4 Demo

在这一节中,我们将造两个假句子,分别只有2个单词和1个单词。此外,我们还会随机生成他们的真实答案。最后,我们将展示如何使用Chainer v2.0训练CRF层。包括CRF层在内的所有代码都是来自GitHub:https://github.com/createmomo/CRF-Layer-on-the-Top-of-BiLSTM。

首先,我们导入自己的CRF层含义,' MyCRFLayer '。

import numpy as np
import chainer
import MyCRFLayer

在我们的数据集中我们只有两个标签(例如B-Person, O)

n_label = 2

下面的代码块生成两个句子,xs = [x1, x2]。句子x1有两个单词,x2只有一个单词。

a = np.random.uniform(-1, 1, n_label).astype('f')
b = np.random.uniform(-1, 1, n_label).astype('f')
x1 = np.stack([b, a])
x2 = np.stack([a])
xs = [x1, x2]

应该注意的是,x1和x2的元素不是词嵌入,而是BiLSTM层的emission分数,这里没有实现。

例如,在x1句子中,我们有两个单词w0和w1,而x1是一个形状为(2, 2)的矩阵。第一个“2”表示它有两个单词,第二个“2”表示我们的数据集中有两个标签,如下表所示。

接下来,我们应该有这两个句子的真正标签。

ys = [np.random.randint(n_label,size = x.shape[0],dtype='i') for x in xs]
print('Ground Truth:')
for i,y in enumerate(ys):print('\tsentence {0}: [{1}]'.format(str(i),' '.join([str(label) for label in y])))

这里是随机生成的ground truth。

Ground Truth:sentence 0: [0 0]sentence 1: [1]

虽然我们并没有真正的BiLSTM层,但这并不会影响我们展示如何在chainer中训练一个模型。我们模拟了BiLSTM层的输出和真实答案。因此,我们可以使用一些优化器来优化CRF层。

在本文中,我们使用了随机梯度下降法来训练我们的模型。(如果你现在不熟悉训练方法,你可以以后再学。)这个优化器将根据我们的CRF层根据预测标签和ground truth标签之间的损失来更新参数(即transition矩阵)。

from chainer import optimizers
optimizer = optimizers.SGD(lr=0.01)
optimizer.setup(my_crf)
optimizer.add_hook(chainer.optimizer.GradientClipping(5.0))

CRF层通过标签的数量来初始化(不包括额外添加的开始和结束)。

my_crf = MyCRFLayer.My_CRF(n_label)

然后我们可以开始训练CRF层。

print('Predictions:')
for epoch_i in range(201):with chainer.using_config('train', True):loss = my_crf(xs,ys)# update parametersoptimizer.target.zerograds()loss.backward()optimizer.update()with chainer.using_config('train', False):if epoch_i % 50 == 0:print('\tEpoch {0}: (loss={1})'.format(str(epoch_i),str(loss.data)))for i, prediction in enumerate(my_crf.argmax(xs)):print('\t\tsentence {0}: [{1}]'.format(str(i), ' '.join([str(label) for label in prediction])))

正如我们的代码输出所示,损失正在减少,CRF层正在学习(预测正在变得正确)。

Predictions:Epoch 0: (loss=3.06651592255)sentence 0: [1 1]sentence 1: [1]Epoch 50: (loss=1.96822023392)sentence 0: [1 1]sentence 1: [1]Epoch 100: (loss=1.51349794865)sentence 0: [0 0]sentence 1: [1]Epoch 150: (loss=1.27118945122)sentence 0: [0 0]sentence 1: [1]Epoch 200: (loss=1.09977662563)sentence 0: [0 0]sentence 1: [1]
3.5 GitHub

demo和CRF层代码可以在GitHub上找到。代码可能并不完美。因为为了便于理解,一些实现非常简单。我相信它可以被优化成一个更有效的算法。

—END—

英文原文:https://createmomo.github.io/2017/12/07/CRF-Layer-on-the-Top-of-BiLSTM-8/

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧

这篇关于BiLSTM上的CRF,用命名实体识别任务来解释CRF(4)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080770

相关文章

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

Python之变量命名规则详解

《Python之变量命名规则详解》Python变量命名需遵守语法规范(字母开头、不使用关键字),遵循三要(自解释、明确功能)和三不要(避免缩写、语法错误、滥用下划线)原则,确保代码易读易维护... 目录1. 硬性规则2. “三要” 原则2.1. 要体现变量的 “实际作用”,拒绝 “无意义命名”2.2. 要让

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

Spring定时任务之fixedRateString的实现示例

《Spring定时任务之fixedRateString的实现示例》本文主要介绍了Spring定时任务之fixedRateString的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录从毫秒到 Duration:为何要改变?核心:Java.time.Duration.parse

Oracle Scheduler任务故障诊断方法实战指南

《OracleScheduler任务故障诊断方法实战指南》Oracle数据库作为企业级应用中最常用的关系型数据库管理系统之一,偶尔会遇到各种故障和问题,:本文主要介绍OracleSchedul... 目录前言一、故障场景:当定时任务突然“消失”二、基础环境诊断:搭建“全局视角”1. 数据库实例与PDB状态2

如何正确识别一台POE交换机的好坏? 选购可靠的POE交换机注意事项

《如何正确识别一台POE交换机的好坏?选购可靠的POE交换机注意事项》POE技术已经历多年发展,广泛应用于安防监控和无线覆盖等领域,需求量大,但质量参差不齐,市场上POE交换机的品牌繁多,如何正确识... 目录生产标识1. 必须包含的信息2. 劣质设备的常见问题供电标准1. 正规的 POE 标准2. 劣质设

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境