雷达标定与解析

2024-06-21 08:44
文章标签 解析 标定 雷达

本文主要是介绍雷达标定与解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

融合雷达与解析雷达数据的相关代码。感谢开源社区的贡献。以下代码继承了很多人的工作。
如果是单雷达:
直接进行标定,所以就是接收相关的话题然后发布。
lidar_calibration_params.yaml:

calibration:在这个接口里面x_offset: 0.0y_offset: 0.0z_offset: 0.4roll_offset: -0.074pitch_offset: 0yaw_offset: -1.57input_topic: "/lslidar_point_cloud"
output_topic: "/fusion_points"

lidar_calibration_node.cpp

#include <ros/ros.h>
#include <sensor_msgs/PointCloud2.h>
#include <tf2/LinearMath/Quaternion.h>
#include <tf2/LinearMath/Matrix3x3.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl_ros/transforms.h>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <Eigen/Geometry>
#include <iostream>// 标定参数结构体
struct CalibrationParams
{double x_offset;double y_offset;double z_offset;double roll_offset;double pitch_offset;double yaw_offset;
};ros::Publisher calibrated_pub;
CalibrationParams calibration_params;void loadCalibrationParams(const ros::NodeHandle& nh)
{nh.getParam("calibration/x_offset", calibration_params.x_offset);nh.getParam("calibration/y_offset", calibration_params.y_offset);nh.getParam("calibration/z_offset", calibration_params.z_offset);nh.getParam("calibration/roll_offset", calibration_params.roll_offset);nh.getParam("calibration/pitch_offset", calibration_params.pitch_offset);nh.getParam("calibration/yaw_offset", calibration_params.yaw_offset);// 打印加载的参数以确认ROS_INFO("Loaded calibration parameters:");ROS_INFO("x_offset: %f", calibration_params.x_offset);ROS_INFO("y_offset: %f", calibration_params.y_offset);ROS_INFO("z_offset: %f", calibration_params.z_offset);ROS_INFO("roll_offset: %f", calibration_params.roll_offset);ROS_INFO("pitch_offset: %f", calibration_params.pitch_offset);ROS_INFO("yaw_offset: %f", calibration_params.yaw_offset);
}void laserCallback(const sensor_msgs::PointCloud2ConstPtr& cloud_msg)
{// Create transformation matrixEigen::Affine3f transform = Eigen::Affine3f::Identity();transform.translation() << calibration_params.x_offset, calibration_params.y_offset, calibration_params.z_offset;Eigen::AngleAxisf rollAngle(calibration_params.roll_offset, Eigen::Vector3f::UnitX());Eigen::AngleAxisf pitchAngle(calibration_params.pitch_offset, Eigen::Vector3f::UnitY());Eigen::AngleAxisf yawAngle(calibration_params.yaw_offset, Eigen::Vector3f::UnitZ());transform.rotate(yawAngle * pitchAngle * rollAngle);// 打印转换矩阵以确认std::cout << "Transformation Matrix:" << std::endl;std::cout << transform.matrix() << std::endl;// Transform the point cloudsensor_msgs::PointCloud2 calibrated_cloud_msg;pcl_ros::transformPointCloud(transform.matrix(), *cloud_msg, calibrated_cloud_msg);// Publish the calibrated point cloudcalibrated_cloud_msg.header = cloud_msg->header;calibrated_pub.publish(calibrated_cloud_msg);
}int main(int argc, char** argv)
{ros::init(argc, argv, "lidar_calibration_node");ros::NodeHandle nh;// 获取参数服务器中的参数std::string input_topic;std::string output_topic;int queue_size;nh.param<std::string>("input_topic", input_topic, "/lslidar_point_cloud");nh.param<std::string>("output_topic", output_topic, "/calibrated_point_cloud");nh.param<int>("queue_size", queue_size, 10);// 加载标定参数loadCalibrationParams(nh);// std::cout<<input_topic<<std::endl;// std::cout<<output_topic<<std::endl;// 订阅输入点云话题ros::Subscriber laser_sub = nh.subscribe(input_topic, queue_size, laserCallback);// 发布标定后的点云话题calibrated_pub = nh.advertise<sensor_msgs::PointCloud2>(output_topic, queue_size);ros::spin();return 0;
}

启动launch:

<launch><rosparam file="$(find lidar_calibration)/config/lidar_calibration_params.yaml" command="load"/><node pkg="lidar_calibration" type="lidar_calibration_node" name="lidar_calibration_node" output="screen"></node></launch>

以上是单个雷达的标定的,接下来是融合点云的数据标定:
来源于一个开源项目:git clone https://github.com/Hliu0313/fusion_pointclouds
也是直接修改接口就行了:

#参数加载对应 loadparams.h/loadparams.cpp,若修改params.yaml对应修改加载函数即可
fusion_lidar_num: 3                                                      #融合 lidar 点云数量 2/3/4
topics:                                                                                 #订阅 lidar 点云话题
#   parent_pc_topic: "/livox/lidar"
#   child_pc_topic1: "/right/rslidar_points"
#   child_pc_topic2: "/left/rslidar_points"
#   child_pc_topic3: "/livox/lidar"parent_pc_topic: "/livox/lidar"child_pc_topic1: "/right/rslidar_points"child_pc_topic2: "/left/rslidar_points"child_pc_topic3: "/livox/lidar"fusion_pc_topic: "/fusion_points"                       #融合后发布点云话题名称fusion_pc_frame_id: "rslidar"                 #融合后发布点云话题名称#注意
#1.点云话题少于4个时,为了时间同步回调函数适应不同数量雷达,空位child_pc_topic可以填入parent_pc_topic
#例如 需要融合"/front/rslidar_points" 与"/left/rslidar_points"点云数据
#
#fusion_lidar_num: 2
#parent_pc_topic: "/front/rslidar_points"
#child_pc_topic1: "/left/rslidar_points"
#child_pc_topic2: "/front/rslidar_points" "
#child_pc_topic3: "/front/rslidar_points" #---->   如果只是融合点云数据,下方参数填 false 即可    <------- 
set_params_tf:  true                                                     #是否对点云进行坐标变换 
set_params_internal_bounds: true                       #是否对点云内边界 XYZ 滤除
set_params_external_bounds: true                       #是否对点外内边界 XYZ 滤除
set_dynamic_params: true                                        #是否开启动态调整,配合 rqt_reconfigure 动态调整坐标变化参数 ---> 解决标定参数不准确,实时微调# cpc1_to_ppc:                                                                   #child_pc1_to_parent_pc,坐标变化信息传入节点,按需填写即可
#    x: -0.75
#    y: -0.8
#    z: 0.58
#    roll: 0.05
#    pitch: 0.01
#    yaw: 0.06
# cpc2_to_ppc:
#    x: -0.75
#    y: 0.72
#    z: 0.58
#    roll: 0.0
#    pitch: 0.0
#    yaw: -0.1
# cpc3_to_ppc:
#    x: 0.0
#    y: 0.0
#    z: 0.0
#    roll: 0.0
#    pitch: 0.0
#    yaw: 0.0cpc1_to_ppc:                                                                   #child_pc1_to_parent_pc,坐标变化信息传入节点,按需填写即可x: -0.8y: -0.5z: 1.06roll: 0.04pitch: 0.0yaw: 0.0cpc2_to_ppc:x: -0.75y: 0.75z: 1.06roll: -0.018pitch: 0.018yaw: -0.168# cpc2_to_ppc:
#    x: -0.
#    y: 0.
#    z: 0.0
#    roll: -0.0
#    pitch: -0.0
#    yaw: -0.0cpc3_to_ppc:x: 0.0y: 0.0z: 0.0roll: 0.0pitch: 0.0yaw: 0# Dynamic rqt_reconfigure default bounds
internal_bounds :  #内边界x_min: 0.0x_max: 0.0y_min: 0.0y_max: 0.0z_min: 0.0z_max: 0.0external_bounds :  #外边界x_min: -100x_max: 100y_min: -100y_max: 100z_min: -5z_max: 5

最后是聚类,也是来源于一个开源项目:
https://blog.csdn.net/weixin_42905141/article/details/122977315?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522171888729016777224495812%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=171888729016777224495812&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-1-122977315-null-null.142v100control&utm_term=%E4%B8%9A%E4%BD%99%E5%86%99%E7%9A%84%E4%B8%80%E4%B8%AA%E7%B2%97%E7%89%88demo%EF%BC%8C%E6%9C%89%E5%BE%88%E5%A4%9A%E5%9C%B0%E6%96%B9%E6%98%AF%E5%8F%AF%E4%BB%A5%E6%94%B9%E8%BF%9B%E7%9A%84%EF%BC%8C%E5%A4%A7%E5%AE%B6%E8%87%AA%E8%A1%8C%E4%BF%AE%E6%94%B9%E5%90%A7&spm=1018.2226.3001.4187
非常感谢他的工作,接下来要做的就是把障碍物的信息用我们需要的方式重新就行发布就行了。我这里直接借鉴一下之前的比赛所遇到的障碍物的接口,我很喜欢他的这一系列的定义。
请添加图片描述
在这个接口里面主要是用上述msg来定义雷达给出的数据。
上述单雷达标定,多雷达融合,以及雷达的聚类都放到这里面了:

https://github.com/chan-yuu/lidar_ws

后续会继续做雷达处理的相关的工作

这篇关于雷达标定与解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080748

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

99%的人都选错了! 路由器WiFi双频合一还是分开好的专业解析与适用场景探讨

《99%的人都选错了!路由器WiFi双频合一还是分开好的专业解析与适用场景探讨》关于双频路由器的“双频合一”与“分开使用”两种模式,用户往往存在诸多疑问,本文将从多个维度深入探讨这两种模式的优缺点,... 在如今“没有WiFi就等于与世隔绝”的时代,越来越多家庭、办公室都开始配置双频无线路由器。但你有没有注