无意间发现BAT总监总结的这套TensorFlow和PyTorch框架学习笔记(教程/PPT/代码)

本文主要是介绍无意间发现BAT总监总结的这套TensorFlow和PyTorch框架学习笔记(教程/PPT/代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作为一名AI工程师,掌握一门深度学习框架是必备的生存技能之一

自 TensorFlow 从 Google 中脱颖而出以来,它在研究和商业领域成为最受欢迎的开源深度学习框架,紧接着 从 Facebook 诞生的 PyTorch 由于社区推动的易用性改进和越来越广泛的用例部署,而迅速赶上TensorFlow。

 

两个框架在当年一度备受争议,TensorFlow和PyTorch谁更好?

 

从去年校招开始到现在负责部门的面试,从我手上流走的简历多多少少也有上百封了。

 

面试了很多候选人,当问他们常用的深度学习框架时,发现他们清一色的选择了:PyTorch。

 

从各个方面可以看出,经过这些年的发展,PyTorch在学术圈的「垄断」地位基本已经站稳

 

诚然,比起TensorFlow,大多数研究人员更偏爱PyTorch的API,PyTorch设计更科学,而TensorFlow自推出2.0版本后,与TF 1.x 的API差异实在不小,导致doc的阅读成本和版本适配成本都相当高。

 

如果是初学者,无脑Pytorch就对了。社区资源多、开源代码多、上手也很简单,各大厂商对Pytorch的支持也多(TensorRT、ONNX)。

 

其实框架的作用就是我们无需造轮子可以直接使用,并且节省工作量,对于Pytorch来说对研究友好、对训练友好、对白嫖大佬的开源代码也友好,对模型部署也友好,可以节省大把时间去做其他有意义的事情,没有理由不使用Pytorch。

 

如果是工作了,就看公司在用什么吧,因为公司是面向需求的

 

在业界,无论算法性能有多好,总归还是要上线的,选择框架的时候便会考虑以下这些问题,是否方便部署到线上,支持多语言,并且有较好的系统稳定性以及有非常多线上应用实例。

 

TF 1.x系列面世较早,在学术界、工业界都有很深的积淀,工业界由于项目更重,牵一发而动全身,因此目前很多项目仍然停留在TF 1.x(1.1x)上面。

 

像业界大多数支撑搜广推场景的模型,还是用Tensorflow,TensorFlow适合大规模部署,特别是需要跨平台和嵌入式部署时。

 

至于延伸到选择哪个的问题:

 

显而易见,小孩子才做选择,而我们都要学,基本都要会用,这样才能自己选择工具,而不是工具挑选你。

然而,我们通过调研发现,80%的0-3岁互联网人没有系统的学习过Tensorflow、PyTorch方向,缺乏项目实战,处于比较浅层面的对比。

网上解读Tensorflow、PyTorch文章非常多但知识点零散,学习起来抓不住重点。

最近整理一套深度学习框架必备的学习资料,这套资料内容非常详尽全面,课程通过讲解和实战操作,带你从零开始训练网络,做到独立搭建和设计卷积神经网络(包括主流分类和检测网络),并进行神经网络的训练和推理(涉及PyTorch、Tensorflow、Caffe、Mxnet等多个主流框架),通过实战让你掌握各种深度学习开源框架。(资料已经全部整理好)

(资料内容过多,仅截取部分)

上次已经给大家推荐过一次,但微信有限制每天只能加100个人,很多人反馈没有领到,这次又申请到了100个名额,速度领取,手慢无!

由于工作需要,这份教程我本人也在学习中,虽然已经从事这个行业多年,再看这份教程的时候,仍然能查漏补缺,收获满满,我相信不管是AI入门,还是已经具备了一定的工作经验,这份学习资料,都值得你去认真学习研究。

????长按下方二维码 2 秒

立即领取

(添加小助理人数较多,请耐心等待)

该视频出品人是王小天,目前就职于BAT之一,AI算法高级技术专家,法国TOP3高校双硕(计算机科学和数学应用双硕士)毕业。

工作期间主要负责人工智能业务线CV与NLP相关算法工作,推进人机混合智能、语义分割、机器翻译、虹膜识别等模块的核心算法研究与优化。

 

对图像分类、物体检测、目标跟踪、自动驾驶、计算机体系结构等有深入的研究。

所有以上相关的的内容全部都已经打包好了,汇总成了一份百度云的链接,小贴心之处是怕有的兄弟没有买百度云会员的朋友,能用2MB+/S的速度下载,还特地给大家准备了下载工具。

这篇关于无意间发现BAT总监总结的这套TensorFlow和PyTorch框架学习笔记(教程/PPT/代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080663

相关文章

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)