KBQA 图谱问答论文整理

2024-06-21 07:38
文章标签 整理 问答 图谱 论文 kbqa

本文主要是介绍KBQA 图谱问答论文整理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号 系统之神与我同在

本文来自知乎和微信公众号收集

综述

1.Core techniques of question answering systems over knowledge bases: a survey. Dennis Diefenbach, Vanessa Lopez, Kamal Singh, Pierre Maret. Knowledge and Information Systems(2017). [PDF]
2.A Survey of Question Answering over Knowledge Base. Peiyun Wu, Xiaowang Zhang, Zhiyong Feng. CCIS(2019). [PDF]
3**.A Survey on Complex Question Answering over Knowledge Base: Recent Advances and Challenges.** Bin Fu, Yunqi Qiu, Chengguang Tang, Yang Li, Haiyang Yu, Jian Sun. arXiv(2020). [PDF]
4**.Introduction to Neural Network based Approaches for Question Answering over Knowledge Graphs.** Nilesh Chakraborty, Denis Lukovnikov, Gaurav Maheshwari, Priyansh Trivedi, Jens Lehmann, Asja Fischer. WIDM(2021). [PDF]
5.A Survey on Complex Knowledge Base Question Answering: Methods, Challenges and Solutions. Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao, Ji-Rong Wen. IJCAI(2021). [PDF]

数据集

1.WebQuestions: “Semantic parsing on freebase from question-answer pairs”. EMNLP(2013). [PDF] [Homepage]
2.ComplexQuestions: “Constraint based question answering with knowledge graph”. COLING(2016). [PDF] [Homepage]
3.WebQuestionsSP: “The value of semantic parse labeling for knowledge base question answering”. ACL(2016). [PDF] [Homepage]
4.ComplexWebQuestions: “The web as a knowledge-base for answering complex questions”. NAACL(2018). [PDF] [Homepage]
5.QALD: “Evaluating question answering over linked data”. Web Semantics Science Services And Agents On The World Wide Web(2013). [PDF] [Homepage]
6.LC-QuAD 1.0: “Lc-quad: A corpus for complex question answering over knowledge graphs”. ISWC(2017). [PDF] [Homepage]
7.LC-QuAD 2.0: ““Lc-quad 2.0: A large dataset for complex question answering over wikidata and dbpedia”. ISWC(2019). [PDF] [Homepage]
8.MetaQA Vanilla: “Variational reasoning for question answering with knowledge graph”. AAAI(2018). [PDF] [Homepage]
9.CFQ: “Measuring compositional generalization: A comprehensive method on realistic data”. ICLR(2020). [PDF] [Homepage]
10.KQA Pro: “Kqa pro: A large diagnostic dataset for complex question answering over knowledge base”. arXiv(2020). [PDF] [Homepage]
11.GrailQA: “Beyond I.I.D.: three levels of generalization for question answering on knowledge bases”. WWW(2021). [PDF] [Homepage]

基于语义解析的方法

1.Template-based question answering over RDF data. Unger, Christina, Lorenz Bühmann, Jens Lehmann, A. N. Ngomo, D. Gerber, P. Cimiano. WWW(2012). [PDF]
2.Large-scale semantic parsing via schema matching and lexicon extension. Qingqing Cai, Alexander Yates. ACL(2013). [PDF]
3.Semantic parsing on freebase from question-answer pairs. Jonathan Berant, Andrew Chou, Roy Frostig, Percy Liang. EMNLP(2013). [PDF]
4.Large-scale semantic parsing without question-answer pairs. Siva Reddy, Mirella Lapata, Mark Steedman. TACL(2014). [PDF]
5.Semantic parsing for single relation question answering. Wen-tau Yih, Xiaodong He, Christopher Meek. ACL(2014). [PDF]
6.Information extraction over structured data: Question answering with Freebase. Xuchen Yao, Benjamin Van Durme. ACL(2014). [PDF]
7.Semantic parsing via staged query graph generation: Question answering with knowledge base. Wen-tau Yih, Ming-Wei Chang, Xiaodong He, Jianfeng Gao. ACL(2015). [PDF]
8.Simple question answering by attentive convolutional neural network. Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, Hinrich Schütze. COLING(2016). [PDF]
9.Learning to compose neural networks for question answering. Jacob Andreas, Marcus Rohrbach, Trevor Darrell, Dan Klein. NAACL(2016). [PDF] [Code]
10.Knowledge base question answering with a matching-aggregation model and question-specific contextual relations. Yunshi Lan, Shuohang Wang, Jing Jiang. TASLP(2019). [PDF]

基于信息检索的方法

1.Open question answering with weakly supervised embedding models. Antoine Bordes, Jason Weston, Nicolas Usunier. Machine Learning and Knowledge Discovery in Databases(2014). [PDF]
2**.Question answering with subgraph embeddings.** Antoine Bordes, Sumit Chopra, Jason Weston. EMNLP(2014). [PDF]
3.Larges cale simple question answering with memory networks. Antoine Bordes, Nicolas Usunier, Sumit Chopra, Jason Weston. arXiv(2015). [PDF] [Code]
4.Question answering over freebase with multi-column convolutional neural networks. Li Dong, Furu Wei, Ming Zhou, Ke Xu. ACL(2015). [PDF]
5.Question answering over knowledge base using factual memory networks. Sarthak Jain. NAACL(2016). [PDF]
6.An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu, Jun Zhao. ACL(2017). [PDF]
7.Bidirectional Attentive Memory Networks for Question Answering over Knowledge Bases. Yu Chen, Lingfei Wu, Mohammed J. Zaki. NAACL(2019). [PDF] [Code]

其他方法

1.Hybrid question answering over knowledge base and free text. Kun Xu, Yansong Feng, Songfang Huang, Dongyan Zhao. COLING(2016). [PDF]
2.Question answering on freebase via relation extraction and textual evidence. Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang, Dongyan Zhao. ACL(2016). [PDF] [Code]
3**.Improved neural relation detection for knowledge base question answering.** Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos Santos, Bing Xiang, Bowen Zhou. ACL(2017). [PDF]
4.KBQA: learning question answering over QA corpora and knowledge bases. Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang, Wei Wang. VLDB(2017). [PDF]
5.Knowledge base question answering with topic units. Yunshi Lan , Shuohang Wang, Jing Jiang. IJCAI(2019). [PDF]
6.Retrieval, Re-ranking and Multi-task Learning for Knowledge-Base Question Answering. Zhiguo Wang, Patrick Ng, Ramesh Nallapati, Bing Xiang. EACL(2021). [PDF] .

复杂KBQA
基于语义解析的方法
1.Automated template generation for question answering over knowledge graphs. Abujabal, Abdalghani, Mohamed Yahya, Mirek Riedewald, G. Weikum. WWW(2017). [PDF]
2.Neural symbolic machines: Learning semantic parsers on Freebase with weak supervision. Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, Ni Lao. ACL(2017). [PDF] [Code]
3.Knowledge base question answering via encoding of complex query graphs. Kangqi Luo, Fengli Lin, Xusheng Luo, Kenny Zhu. EMNLP(2018). [PDF] [Code]
4.Neverending learning for open-domain question answering over knowledge bases. Abujabal, Abdalghani, Rishiraj Saha Roy, Mohamed Yahya, G. Weikum. WWW(2018). [PDF]
5,A state-transition framework to answer complex questions over knowledge base. Sen Hu, Lei Zou, Xinbo Zhang. EMNLP(2018). [PDF]
6.Question answering over knowledge graphs: Question understanding via template decomposition. Weiguo Zheng, Jeffrey Xu Yu, Lei Zou, Hong Cheng. VLDB(2018). [PDF]
7.Learning to answer complex questions over knowledge bases with query composition. Bhutani, Nikita, Xinyi Zheng, H. Jagadish. CIKM(2019). [PDF]
8.UHop: An unrestricted-hop relation extraction framework for knowledge-based question answering. Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jijnasa Nayak, Lun-Wei Ku. NAACL(2019). [PDF]
9.Multi-hop knowledge base question answering with an iterative sequence matching model. * Yunshi Lan, Shuohang Wang, Jing Jiang*. ICDM(2019). [PDF]
10.Learning to rank query graphs for complex question answering over knowledge graphs. Gaurav Maheshwari, Priyansh Trivedi, Denis Lukovnikov, Nilesh Chakraborty, Asja Fischer, Jens Lehmann. ISWC(2019). [PDF] [Code]
11.Complex program induction for querying knowledge bases in the absence of gold programs. Amrita Saha, Ghulam Ahmed Ansari, Abhishek Laddha, Karthik Sankaranarayanan, Soumen Chakrabarti. TACL(2019). [PDF][Code]
12.Leveraging Frequent Query Substructures to Generate Formal Queries for Complex Question Answering. Jiwei Ding, Wei Hu, Qixin Xu, Yuzhong Qu. EMNLP(2019). [PDF]
13.Hierarchical query graph generation for complex question answering over knowledge graph. Qiu, Yunqi, K. Zhang, Yuanzhuo Wang, Xiaolong Jin, Long Bai, Saiping Guan, Xueqi Cheng. CIKM(2020). [PDF]
14.SPARQA: skeleton-based semantic parsing for complex questions over knowledge bases. Yawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu. AAAI(2020). [PDF] [Code]
15.Formal query building with query structure prediction for complex question answering over knowledge base. Yongrui Chen, Huiying Li, Yuncheng Hua, Guilin Qi. IJCAI(2020). [PDF] [Code]
16.Query graph generation for answering multi-hop complex questions from knowledge bases. Yunshi Lan, Jing Jiang. ACL(2020). [PDF] [Code]
17.Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases. Nikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish. ACL(2020). [PDF]
18.Leveraging abstract meaning representation for knowledge base question answering. Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada, Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy, Ryan Riegel, Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, Mo Yu. Findings of ACL(2021). [PDF]

基于信息检索的方法
1.Open domain question answering based on text enhanced knowledge graph with hyperedge infusion. Jiale Han, Bo Cheng, Xu Wang. Findings of EMNLP(2018). [PDF]
2.Open domain question answering using early fusion of knowledge bases and text. Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, William Cohen. EMNLP(2018). [PDF] [Code]
3.An interpretable reasoning network for multi-relation question answering. Mantong Zhou, Minlie Huang, Xiaoyan Zhu. COLING(2018). [PDF] [Code]
4.Variational reasoning for question answering with knowledge graph. Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J. Smola, Le Song. AAAI(2018). [PDF] [Code]
5.Enhancing key-value memory neural networks for knowledge based question answering. Kun Xu, Yuxuan Lai, Yansong Feng, Zhiguo Wang. NAACL(2019). [PDF]
6.Pullnet: Open domain question answering with iterative retrieval on knowledge bases and text. Haitian Sun, Tania Bedrax-Weiss, William W. Cohen. EMNLP(2019). [PDF]
7.Improving question answering over incomplete kbs with knowledge-aware reader. Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, William Yang Wang. ACL(2019). [PDF] [Code]
8.Answering Complex Questions by Joining Multi-Document Evidence with Quasi Knowledge Graphs. Xiaolu Lu, Soumajit Pramanik, Rishiraj Saha Roy, Abdalghani Abujabal, Yafang Wang, Gerhard Weikum. SIGIR(2019). [PDF]
9.Two-phase Hypergraph Based Reasoning With Dynamic Relations For Multi-Hop KBQA. Jiale Han, Bo Cheng, Xu Wang. IJCAI(2020). [PDF]
10.Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. Apoorv Saxena, Aditay Tripathi, Partha Talukdar. ACL(2020). [PDF] [Code]
11.Stepwise reasoning for multi-relation question answering over knowledge graph with weak supervision. Qiu, Yunqi, Yuanzhuo Wang, Xiaolong Jin, K. Zhang. WSDM(2020). [PDF] [Code]
12.Modeling Long-distance Node Relations for KBQA with Global Dynamic Graph. Xu Wang, Shuai Zhao, Jiale Han, Bo Cheng, Hao Yang, Jianchang Ao, Zhenzi Li. COLING(2020). [PDF]
13.Improving multi-hop knowledge base question answering by learning intermediate supervision signals. Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, Ji-Rong Wen. WSDM(2021). [PDF] [Code]

5.3 其它方法
1.QUINT: Interpretable Question Answering over Knowledge Bases. Abdalghani Abujabal, Rishiraj Saha Roy, Mohamed Yahya, Gerhard Weikum. EMNLP(2017). [PDF]
2.Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering. Daniil Sorokin, Iryna Gurevych. COLING(2018). [PDF] [Code]
3.PERQ: Predicting, Explaining, and Rectifying Failed Questions in KB-QA Systems. Zhiyong Wu, Ben Kao, Tien-Hsuan Wu, Pengcheng Yin, Qun Liu. WSDM(2020). [PDF]
4.Few-Shot Complex Knowledge Base Question Answering via Meta Reinforcement Learning. Yuncheng Hua, Yuan-Fang Li, Gholamreza Haffari, Guilin Qi, Tongtong Wu. EMNLP(2020). [PDF] [Code]
5.Question Answering Over Temporal Knowledge Graphs. Apoorv Saxena, Soumen Chakrabarti, Partha Talukdar. ACL(2021). [PDF] [Code]
6.Improving Zero-Shot Cross-lingual Transfer for Multilingual Question Answering over Knowledge Graph. Yucheng Zhou, Xiubo Geng, Tao Shen, Wenqiang Zhang, Daxin Jiang. NAACL(2021). [PDF]
7.Complex Question Answering on knowledge graphs using machine translation and multi-task learning. Saurabh Srivastava, Mayur Patidar, Sudip Chowdhury, Puneet Agarwal, Indrajit Bhattacharya, Gautam Shroff. EACL(2021). [PDF]

这篇关于KBQA 图谱问答论文整理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080607

相关文章

MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)

《MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)》本文给大家介绍MyBatis的xml中字符串类型判空与非字符串类型判空处理方式,本文给大家介绍的非常详细,对大家的学习或... 目录完整 Hutool 写法版本对比优化为什么status变成Long?为什么 price 没事?怎

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python38个游戏开发库整理汇总

《Python38个游戏开发库整理汇总》文章介绍了多种Python游戏开发库,涵盖2D/3D游戏开发、多人游戏框架及视觉小说引擎,适合不同需求的开发者入门,强调跨平台支持与易用性,并鼓励读者交流反馈以... 目录PyGameCocos2dPySoyPyOgrepygletPanda3DBlenderFife

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语