虚拟现实环境下的远程教育和智能评估系统(十一)

2024-06-21 04:04

本文主要是介绍虚拟现实环境下的远程教育和智能评估系统(十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

视频帧画面知识点区域划分

知识点区域精确分割技术:

在深度学习检测模型结果基础上使用基于交并比(IoU)阈值的目标合并算法,合并过度重合目标区域面积,实现知识点区域精确分割

多模态知识点内容匹配策略:

图像:利用GPT-4模型的多模态处理能力,将视频帧中的图像与预设的知识点语义注解进行匹配 文本:使用Sentence Transformer模型对视频帧中提取的文本内容进行深度语义编码,将其嵌入向量与知识点数据库中的语义向量进行比较。通过计算语义相似度,精确匹配相关知识点,实现高效的文本内容到知识点的映射;

自此,可以使视频帧画面的各部分都有对应的知识点;

import os
import re
from sentence_transformers import SentenceTransformer, util
from test_gpt import detection_gpt# 初始化Sentence Transformer模型
model = SentenceTransformer('all-MiniLM-L6-v2')def get_embedding(text):return model.encode(text, convert_to_tensor=True)def semantic_similarity(text1, text2):embedding1 = get_embedding(text1)embedding2 = get_embedding(text2)return util.pytorch_cos_sim(embedding1, embedding2).item()def parse_knowledge_content(content):knowledge_points = []kp_blocks = content.strip().split("\n\n")for block in kp_blocks:lines = block.split("\n")kp_dict = {}for line in lines:key, value = line.split(":", 1)kp_dict[key.strip()] = value.strip()knowledge_points.append(kp_dict)return knowledge_pointsdef read_knowledge_file(timestamp, json_folder_path):knowledge_file_path = os.path.join(json_folder_path, f"{timestamp}.txt")try:with open(knowledge_file_path, 'r') as file:content = file.read()return parse_knowledge_content(content)except FileNotFoundError:return "Knowledge file not found"except Exception as e:return str(e)def parse_merge_text(file_path):with open(file_path, 'r') as file:content = file.read()timestamps = re.split(r'Timestamp: (\d+)', content)[1:]timestamp_data = {timestamps[i]: timestamps[i+1] for i in range(0, len(timestamps), 2)}return timestamp_datadef kp_match_data(merge_text_path, json_folder_path, object_frames_folder, output_path):data = parse_merge_text(merge_text_path)output_data = []for timestamp, contents in data.items():knowledge_content = read_knowledge_file(timestamp, json_folder_path)knowledge_txt_path = os.path.join("json_files", f"{timestamp}.txt")if isinstance(knowledge_content, str):output_data.append(f"Timestamp: {timestamp}\n{contents}\n{knowledge_content}\n")continuetry:with open(knowledge_txt_path, 'r', encoding='utf-8') as file:knowledge_txt = file.read()except FileNotFoundError:print(f"Knowledge file not found for timestamp {timestamp}")continue    contents_processed = contentsdetection_matches = re.findall(r'(Detection \d+): \((\d+, \d+, \d+, \d+)\)', contents)for match in detection_matches:detection_label, detection_data = matchdetection_number = detection_label.split(' ')[1].lower()  # e.g., 'detection1'detection_image_path = os.path.join(object_frames_folder, f"{timestamp}_detection{detection_number}.jpg")kp_id = detection_gpt(detection_image_path, knowledge_txt)contents_processed = contents_processed.replace(detection_label, f"{detection_label} (Knowledge_pdoint_id: {kp_id})")ocr_texts = re.findall(r'OCR \d+: \(\d+, \d+, \d+, \d+\) (.+)', contents)for ocr_text in ocr_texts:best_match = Nonebest_score = -float('inf')for kp in knowledge_content:score = semantic_similarity(ocr_text, kp['Original_text'])if score > best_score:best_match = kpbest_score = scoreif best_match:contents_processed = contents_processed.replace(ocr_text, f"(Knowledge_point_id: {best_match['Knowledge_point_id']}) {ocr_text}")output_data.append(f"Timestamp: {timestamp}\n{contents_processed}\n")with open(output_path, 'w', encoding='utf-8') as file:file.write("\n".join(output_data))

OCR得到的音频文本以及YOLO得到的detection区域对应知识点匹配:

下一步即是匹配三方数据:语音文本知识点、帧知识点区域、实时注视点位置

这篇关于虚拟现实环境下的远程教育和智能评估系统(十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080154

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压

VS配置好Qt环境之后但无法打开ui界面的问题解决

《VS配置好Qt环境之后但无法打开ui界面的问题解决》本文主要介绍了VS配置好Qt环境之后但无法打开ui界面的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目UKeLvb录找到Qt安装目录中designer.UKeLvBexe的路径找到vs中的解决方案资源

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.