day64 图论 图论理论基础 深搜 广搜 98. 所有可达路径

2024-06-21 00:04

本文主要是介绍day64 图论 图论理论基础 深搜 广搜 98. 所有可达路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图论理论基础

图的种类

整体上一般分为 有向图 和 无向图。

无向图中有几条边连接该节点,该节点就有几度。

在有向图中,每个节点有出度和入度。

出度:从该节点出发的边的个数。

入度:指向该节点边的个数。

连通性

在图中表示节点的连通情况,我们称之为连通性。

连通图

在无向图中,任何两个节点都是可以到达的,我们称之为连通图 

如果有节点不能到达其他节点,则为非连通图

强连通图

在有向图中,任何两个节点是可以相互到达的,我们称之为 强连通图。

强连通图是在有向图中任何两个节点是可以相互到达

连通分量

在无向图中的极大连通子图称之为该图的一个连通分量。

强连通分量

在有向图中极大强连通子图称之为该图的强连通分量。

图的构造

一般使用邻接表、邻接矩阵 或者用类来表示。

主要是 朴素存储、邻接表和邻接矩阵。

邻接矩阵

邻接矩阵 使用 二维数组来表示图结构。 邻接矩阵是从节点的角度来表示图,有多少节点就申请多大的二维数组。

这种表达方式(邻接矩阵) 在 边少,节点多的情况下,会导致申请过大的二维数组,造成空间浪费。而且在寻找节点连接情况的时候,需要遍历整个矩阵,即 n * n 的时间复杂度,同样造成时间浪费。

邻接矩阵的优点:

  • 表达方式简单,易于理解
  • 检查任意两个顶点间是否存在边的操作非常快
  • 适合稠密图,在边数接近顶点数平方的图中,邻接矩阵是一种空间效率较高的表示方法。

缺点:

  • 遇到稀疏图,会导致申请过大的二维数组造成空间浪费 且遍历 边 的时候需要遍历整个n * n矩阵,造成时间浪费

#邻接表

邻接表 使用 数组 + 链表的方式来表示。 邻接表是从边的数量来表示图,有多少边 才会申请对应大小的链表。

邻接表的优点:

  • 对于稀疏图的存储,只需要存储边,空间利用率高
  • 遍历节点连接情况相对容易

缺点:

  • 检查任意两个节点间是否存在边,效率相对低,需要 O(V)时间,V表示某节点连接其他节点的数量。
  • 实现相对复杂,不易理解

图的遍历方式

图的遍历方式基本是两大类:

  • 深度优先搜索(dfs)
  • 广度优先搜索(bfs)

dfs 与 bfs 区别

  • dfs是可一个方向去搜,不到黄河不回头,直到遇到绝境了,搜不下去了,再换方向(换方向的过程就涉及到了回溯)。
  • bfs是先把本节点所连接的所有节点遍历一遍,走到下一个节点的时候,再把连接节点的所有节点遍历一遍,搜索方向更像是广度,四面八方的搜索过程。

dfs

  • 搜索方向,是认准一个方向搜,直到碰壁之后再换方向
  • 换方向是撤销原路径,改为节点链接的下一个路径,回溯的过程

代码框架

void dfs(参数) {if (终止条件) {存放结果;return;}for (选择:本节点所连接的其他节点) {处理节点;dfs(图,选择的节点); // 递归回溯,撤销处理结果}
}

深搜三部曲

1.确认递归函数,参数

一般情况,深搜需要 二维数组数组结构保存所有路径,需要一维数组保存单一路径,这种保存结果的数组,我们可以定义一个全局变量,避免让我们的函数参数过多。

2.确认终止条件

终止添加不仅是结束本层递归,同时也是我们收获结果的时候。

3.处理目前搜索节点出发的路径

for (选择:本节点所连接的其他节点) {处理节点;dfs(图,选择的节点); // 递归回溯,撤销处理结果
}

98. 所有可达路径

深搜三部曲

1.确认递归函数,参数

首先我们dfs函数一定要存一个图,用来遍历的,需要存一个目前我们遍历的节点,定义为x。

还需要存一个n,表示终点,我们遍历的时候,用来判断当 x==n 时候 标明找到了终点。

(其实在递归函数的参数 不容易一开始就确定了,一般是在写函数体的时候发现缺什么,参加就补什么)

2.确认终止条件

什么时候我们就找到一条路径了?

当目前遍历的节点 为 最后一个节点 n 的时候 就找到了一条 从出发点到终止点的路径。

3.处理目前搜索节点出发的路径

for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点if (graph[x][i] == 1) { // 找到 x链接的节点path.push_back(i); // 遍历到的节点加入到路径中来dfs(graph, i, n); // 进入下一层递归path.pop_back(); // 回溯,撤销本节点}
}
import java.util.ArrayList; 
import java.util.List; 
import java.util.Scanner;public class Main { private static List<List> result = new ArrayList<>(); // 收集符合条件的路径 private static List path = new ArrayList<>(); // 1节点到终点的路径private static void dfs(int[][] graph, int x, int n) {// 当前遍历的节点x 到达节点n if (x == n) { // 找到符合条件的一条路径result.add(new ArrayList<>(path));return;}for (int i = 1; i <= n; i++) { // 遍历节点x链接的所有节点if (graph[x][i] == 1) { // 找到 x链接的节点path.add(i); // 遍历到的节点加入到路径中来dfs(graph, i, n); // 进入下一层递归path.remove(path.size() - 1); // 回溯,撤销本节点}}
}public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int m = scanner.nextInt();// 节点编号从1到n,所以申请 n+1 这么大的数组int[][] graph = new int[n + 1][n + 1];while (m-- > 0) {int s = scanner.nextInt();int t = scanner.nextInt();// 使用邻接矩阵 表示无向图,1 表示 s 与 t 是相连的graph[s][t] = 1;}path.add(1); // 无论什么路径已经是从1节点出发dfs(graph, 1, n); // 开始遍历// 输出结果if (result.size() == 0) {System.out.println(-1);} else {for (List<Integer> pa : result) {for (int i = 0; i < pa.size() - 1; i++) {System.out.print(pa.get(i) + " ");}System.out.println(pa.get(pa.size() - 1));}}scanner.close();}
}

bfs

广搜的搜索方式就适合于解决两个点之间的最短路径问题。

这一圈一圈的搜索过程是怎么做到的,是放在什么容器里,才能这样去遍历。

其实,我们仅仅需要一个容器,能保存我们要遍历过的元素就可以,那么用队列,还是用栈,甚至用数组,都是可以的

用队列的话,就是保证每一圈都是一个方向去转,例如统一顺时针或者逆时针

因为队列是先进先出,加入元素和弹出元素的顺序是没有改变的。

如果用栈的话,就是第一圈顺时针遍历,第二圈逆时针遍历,第三圈有顺时针遍历

因为栈是先进后出,加入元素和弹出元素的顺序改变了。

那么广搜需要注意 转圈搜索的顺序吗? 不需要!

所以用队列,还是用栈都是可以的,但大家都习惯用队列了,所以下面的讲解用我也用队列来讲,只不过要给大家说清楚,并不是非要用队列,用栈也可以

int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1}; // 表示四个方向
// grid 是地图,也就是一个二维数组
// visited标记访问过的节点,不要重复访问
// x,y 表示开始搜索节点的下标
void bfs(vector<vector<char>>& grid, vector<vector<bool>>& visited, int x, int y) {queue<pair<int, int>> que; // 定义队列que.push({x, y}); // 起始节点加入队列visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点while(!que.empty()) { // 开始遍历队列里的元素pair<int ,int> cur = que.front(); que.pop(); // 从队列取元素int curx = cur.first;int cury = cur.second; // 当前节点坐标for (int i = 0; i < 4; i++) { // 开始想当前节点的四个方向左右上下去遍历int nextx = curx + dir[i][0];int nexty = cury + dir[i][1]; // 获取周边四个方向的坐标if (nextx < 0 || nextx >= grid.size() || nexty < 0 || nexty >= grid[0].size()) continue;  // 坐标越界了,直接跳过if (!visited[nextx][nexty]) { // 如果节点没被访问过que.push({nextx, nexty});  // 队列添加该节点为下一轮要遍历的节点visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问}}}}

这篇关于day64 图论 图论理论基础 深搜 广搜 98. 所有可达路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1079638

相关文章

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin