RapidLayout:中英文版面分析推理库

2024-06-20 23:44

本文主要是介绍RapidLayout:中英文版面分析推理库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

继上一篇文章之后,我这里想着将360发布的版面分析模型整合到现有的rapid_layout仓库中,便于大家快速使用。

不曾想到,我这整理工作越做越多了,好在整体都是往更好方向走。

起初,rapid_layout项目是在RapidStructure仓库下的。RapidStructure仓库包含三大块:文档方向分类、版面分析和表格识别。

当时,之所以这么放置,有两个原因:一是偷懒了,借鉴PP-Structure项目结构了;二是觉得这也就是一锤子买卖,整理一遍,就没有后续了。

现在来看,自己有些失算了。RAG的火热,带火了版面分析和表格识别项目。

RapidLayout

考虑到后续方便维护,将RapidLayout项目从RapidStructure中剥离出来,创建RapidLayout仓库( https://github.com/RapidAI/RapidLayout )。

image.png

为了方便大家快速测试自己场景下,模型效果,我在三个平台上(HuggingFace、魔搭、百度星河社区)搭建了在线demo。

image.png

安装使用

脚本使用:

import cv2
from rapid_layout import RapidLayout, VisLayout# model_type类型参见上表。指定不同model_type时,会自动下载相应模型到安装目录下的。
layout_engine = RapidLayout(conf_thres=0.5, model_type="pp_layout_cdla")img = cv2.imread('test_images/layout.png')boxes, scores, class_names, *elapse = layout_engine(img)
ploted_img = VisLayout.draw_detections(img, boxes, scores, class_names)
if ploted_img is not None:cv2.imwrite("layout_res.png", ploted_img)

终端使用:

$ pip install rapid-layout
$ rapid_layout -v -img test_images/layout.png

示例效果

image.png

这篇关于RapidLayout:中英文版面分析推理库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079599

相关文章

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1