Qwen2在Java项目中如何实现优雅的Function_Call工具调用

2024-06-20 22:12

本文主要是介绍Qwen2在Java项目中如何实现优雅的Function_Call工具调用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在当今AI技术飞速发展的背景下,大语言模型如Qwen2和GLM-4凭借其强大的语言处理能力,在诸多领域展现出了巨大的潜力。然而,大模型并非全知全能,它们在处理特定任务时,尤其是在需要与外部系统交互或执行具体功能时,会遇到一定的局限性。这主要是因为大模型通常被设计为封闭的文本生成系统,缺乏直接调用外部工具或API的能力。这种局限性凸显了工具调用在实际应用中的必要性,它能够扩展模型的功能边界,使其能够在真实世界场景中执行更加复杂和具体的操作。

工具调用的必要性

尽管大模型在自然语言理解和生成上取得了显著进步,但它们往往受限于训练数据的内容,无法直接访问网络资源、执行代码或操作数据库等。这意味着在解决实际问题时,模型可能无法提供直接、即时且准确的解决方案,尤其是那些需要实时数据处理或特定功能执行的任务。因此,通过工具调用来增强大模型的功能,成为提升其实用性和灵活性的关键。

在此背景下,ChatGLM3以及最近的GLM-4原生就已经支持了工具调用,这就非常方便,通过直接与外部工具交互,减少了中间环节,提高了响应速度和效率。

tools = [{"name": "track","description": "追踪指定股票的实时价格","parameters": {"type": "object","properties": {"symbol": {"description": "需要追踪的股票代码"}},"required": ['symbol']}},{"name": "text-to-speech","description": "将文本转换为语音","parameters": {"type": "object","properties": {"text": {"description": "需要转换成语音的文本"},"voice": {"description": "要使用的语音类型(男声、女声等)"},"speed": {"description": "语音的速度(快、中等、慢等)"}},"required": ['text']}}
]
system_info = {"role": "system", "content": "Answer the following questions as best as you can. You have access to the following tools:", "tools": tools}

但是Qwen1.5以及Qwen2并不具备原生的工具调用功能,得借助于其Qwen-Agent框架或者langChain框架。那不借助Python框架,我就要使用Java实现该怎么做呢?

使用Java实现Qwen2工具调用

首先,我们需要自定义两个注解FunctionDef​和FunctionParam

@Inherited
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
public @interface FunctionDef {/*** 函数名称* @return 函数名称*/String name() default "";/*** 函数描述* @return 函数描述*/String description();
}@Inherited
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.PARAMETER})
public @interface FunctionParam {/*** 参数名称* @return 参数名称*/String name();/*** 参数描述* @return 参数描述*/String description();/*** 参数枚举* @return 参数枚举*/String[] enums() default {};/*** 是否必填* @return 必填*/boolean required() default false;
}

然后,我们可以根据自己的需求,创建几个工具插件。下面是我创建的一个查询天气的插件:

public class WeatherTool {/*** 查询天气* @param city 城市* @return 天气信息*/@FunctionDef(name = "getWeatherInfo", description = "get the weather info")public static String getWeatherInfo(@FunctionParam(name = "city", description = "the city name") String city) {if (city == null || city.isEmpty()) {throw new IllegalArgumentException("City name must not be null or empty");}OkHttpClient client = new OkHttpClient.Builder().connectTimeout(60, TimeUnit.SECONDS).writeTimeout(60, TimeUnit.SECONDS).readTimeout(60, TimeUnit.SECONDS).build();try {Map<String, String> headers = new HashMap<>(16);headers.put("Content-Type", "application/json");Request.Builder builder = new Request.Builder().url("https://query.asilu.com/weather/baidu/?city="+city);builder.headers(Headers.of(headers));builder.method("GET", null);Request request = builder.build();Response response = client.newCall(request).execute();if (response.isSuccessful()) {ResponseBody responseBody = response.body();JSONObject jsonObject = JSONObject.parseObject(responseBody.string());return jsonObject.toString();} else {throw new OpenAIChatException("Failed with status code %d. messages: %s", response.code(), response.message());}} catch (IOException e) {e.printStackTrace();return "Error encountered while fetching weather data!";}}
}

再然后,我们把所有的工具插件都交给大模型,让它判断要满足用户的提问,应该选择哪个工具插件:

public String getToolResult(String sessionId,String prompt, List<Function> baseTools){String class2Json = buildClass2Json(new BaseFunction());String finalPrompt = String.format("你是一个AI助手,我会给你一个工具对象集合,工具对象包括name(工具名)、description(工具描述)、clazz(工具类名)、parameters(工具参数)。" +"你可以结合工具对象,从用户的问句中提取到关键词,确定要实现用户的任务应该选择哪个工具对象和工具的参数。" +"【工具集合】:%s。" +"【用户提问】:%s?" +"您的响应结果必须为JSON格式,并且不要返回任何不必要的解释,只提供遵循此格式的符合RFC8259的JSON响应。以下是输出必须遵守的JSON Schema实例:‍```%s‍```",JSON.toJSONString(baseTools),prompt,class2Json);String funcParams = chat(sessionId,finalPrompt);funcParams = JSON.parseObject(funcParams, OpenAIChatResponse.class).getChoices().get(0).getMessage().getContent();funcParams = funcParams.substring(funcParams.indexOf("{"), funcParams.lastIndexOf("}")+1);return LoadFunctions.load(JSON.parseObject(funcParams, BaseFunction.class));}

确定哪个工具插件后,再使用LoadFunctions.load加载执行这个工具插件:

public static String load(BaseFunction baseFunction){String className = baseFunction.getClazz();String methodName = baseFunction.getFunctionName();Map<String,String> arg = baseFunction.getParams();List<String> params = new ArrayList<>();String result = "";try {// 加载类Class<?> clazz = Class.forName(className);//可以使用arg.size确定几个参数,我为了演示方便,这里就默认只有一个参数了//int size = arg.size();Method method = clazz.getMethod(methodName,String.class);Parameter[] parameters = method.getParameters();// 如果方法有参数,并且参数类型已知(例如只有一个String类型的参数)for (int i = 0; i < parameters.length; i++){params.add(arg.values().stream().skip(i).findFirst().orElse(null));}// 创建类的实例,如果CarBean有一个无参构造函数Object instance = clazz.newInstance();result = method.invoke(instance,params.toArray()).toString();} catch (ClassNotFoundException e) {LOG.error("类未找到: {}" , className);} catch (NoSuchMethodException e) {LOG.error("找不到方法: {}" , methodName);} catch (InstantiationException | IllegalAccessException | InvocationTargetException e) {LOG.error("无法调用方法: {}" , e.getMessage());}return result;}

最后,我们就可以拿到工具执行的结果,然后把工具执行结果直接给到大模型,让它组织语言回答用户提问就可以了

public Flux<String> streamChatWithTools(String sessionId, String prompt, List<Function> baseTools) {//获取工具结果String toolResult = getToolResult(null,prompt, baseTools);LOG.info("工具调用结果为:{}",toolResult);String promptFormat = String.format("基于工具查询的结果:{%s}。请回答:%s?", toolResult, prompt);return streamChat(sessionId, promptFormat);}

到这里,我们就完成了像Qwen2这种没有原生支持Function_call的大模型的工具调用的功能了。

改进优化

在最初的版本中,我们是把普通问答和工具调用的问答分开设计的,这样的设计虽然能实现各种不同的功能,但是对于用户并不友好,“我怎么知道什么时候该使用工具模式呢?”。
在这里插入图片描述

因此,我们打算将普通问答模式和工具调用问答模式进行合并。这样,用户只需要专注于自己的问题即可,不用在纠结该选择哪个模式。

首先,我们定义一个返回空字符串的工具插件:

/*** 返回一个空字符串* @return 归属地*/@FunctionDef(name = "getEmptyResult", description = "get a empty result")public static String getEmptyResult() {return "";}

然后,也需要修改一下大模型选择工具插件的提示词,“如果用户提问内容与除了getEmptyResult之外的其他所有的工具都不相关,就返回getEmptyResult”:

public String getToolResult(String sessionId,String prompt, List<Function> baseTools){String class2Json = buildClass2Json(new BaseFunction());String finalPrompt = String.format("你是一个AI助手,我会给你一个工具对象集合,工具对象包括name(工具名)、description(工具描述)、clazz(工具类名)、parameters(工具参数)。" +"你可以结合工具对象,从用户的问句中提取到关键词,确定要实现用户的任务应该选择哪个工具对象和工具的参数。" +"【工具集合】:%s。" +"【用户提问】:%s?" +"如果用户提问内容与除了getEmptyResult之外的其他所有的工具都不相关,则你需要响应getEmptyResult工具即可。"+"您的响应结果必须为JSON格式,并且不要返回任何不必要的解释,只提供遵循此格式的符合RFC8259的JSON响应。以下是输出必须遵守的JSON Schema实例:‍```%s‍```",JSON.toJSONString(baseTools),prompt,class2Json);String funcParams = chat(sessionId,finalPrompt);funcParams = JSON.parseObject(funcParams, OpenAIChatResponse.class).getChoices().get(0).getMessage().getContent();funcParams = funcParams.substring(funcParams.indexOf("{"), funcParams.lastIndexOf("}")+1);return LoadFunctions.load(JSON.parseObject(funcParams, BaseFunction.class));}

这样,如果我如果输入一个问题,如地球的直径是多少。大模型识别这个问题与所有的工具插件都不相关,它就返回一个空字符串,也就是不用基于查询的知识进行回答。

public Flux<String> streamChatWithTools(String sessionId, String prompt, List<Function> baseTools) {//获取工具结果String toolResult = getToolResult(null,prompt, baseTools);LOG.info("工具调用结果为:{}",toolResult);String promptFormat = StringUtils.isEmpty(toolResult) ? String.format("请回答:%s?", prompt):String.format("基于工具查询的结果:{%s}。请回答:%s?", toolResult, prompt);return streamChat(sessionId, promptFormat);}

这样,我们就实现了使用一个接口,同时处理用户的通识问答和需要进行工具调用的问答。

这篇关于Qwen2在Java项目中如何实现优雅的Function_Call工具调用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079399

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求