FFmpeg源码:ff_h2645_extract_rbsp函数分析

2024-06-20 20:44

本文主要是介绍FFmpeg源码:ff_h2645_extract_rbsp函数分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、ff_h2645_extract_rbsp函数的声明

ff_h2645_extract_rbsp函数的声明放在FFmpeg源码(本文演示用的FFmpeg源码版本为5.0.3,该ffmpeg在CentOS 7.5上通过10.2.1版本的gcc编译)的头文件libavcodec/h2645_parse.h中。

/*** Extract the raw (unescaped) bitstream.*/
int ff_h2645_extract_rbsp(const uint8_t *src, int length, H2645RBSP *rbsp,H2645NAL *nal, int small_padding);

该函数在H.264/H.265的解码时被调用。作用是将去掉第一个startcode的H.264/H.265码流(以下全部以H.264码流为例) 中的第一个NALU 提取出来,分别去掉和保留防竞争字节,存贮到形参nal 指向的缓冲区中。关于 NALU和防竞争字节的概念可以参考:音视频入门基础:H.264专题(3)——EBSP, RBSP和SODB

形参src:输入型参数。指向缓冲区的指针,该缓冲区存放 去掉第一个startcode(起始码)后的H.264码流。

形参length:输入型参数。指针src指向的缓冲区的长度,单位为字节。

形参rbsp为H2645RBSP类型,为输出型参数。

结构体H2645RBSP 定义如下:

typedef struct H2645RBSP {uint8_t *rbsp_buffer;AVBufferRef *rbsp_buffer_ref;int rbsp_buffer_alloc_size;int rbsp_buffer_size;
} H2645RBSP;

执行ff_h2645_extract_rbsp函数后,

rbsp->rbsp_buffer 变为:去掉startcode和防竞争字节后的H.264码流,可能包含多个NALU。

rbsp->rbsp_buffer_size 变为:rbsp->rbsp_buffer的大小,单位为字节。

形参nal为H2645NAL类型,为输出型参数。

结构体H2645NAL定义如下:

typedef struct H2645NAL {const uint8_t *data;int size;/*** Size, in bits, of just the data, excluding the stop bit and any trailing* padding. I.e. what HEVC calls SODB.*/int size_bits;int raw_size;const uint8_t *raw_data;GetBitContext gb;/*** NAL unit type*/int type;/*** H.264 only, nal_ref_idc*/int ref_idc;/*** HEVC only, nuh_temporal_id_plus_1 - 1*/int temporal_id;/** HEVC only, identifier of layer to which nal unit belongs*/int nuh_layer_id;int skipped_bytes;int skipped_bytes_pos_size;int *skipped_bytes_pos;
} H2645NAL;

执行ff_h2645_extract_rbsp函数后,

nal->data变为:指向缓冲区的指针。该缓冲区存放 “指针src指向的缓冲区中的第一个NALU”,该NALU去掉了startcode和防竞争字节,但保留了NALU Header。

nal->size变为:nal->data指向的缓冲区的大小,单位为字节。

nal->raw_data变为:指向缓冲区的指针。该缓冲区存放 “指针src指向的缓冲区中的第一个NALU”,该NALU去掉了startcode,但保留了防竞争字节和NALU Header。

nal->raw_size变为:nal->raw_data指向的缓冲区的大小,单位为字节。

形参small_padding:输入型参数。值一般等于1,可以忽略。

返回值:整形。值等同于nal->raw_size,为nal->raw_data指向的缓冲区的大小,单位为字节

二、ff_h2645_extract_rbsp函数的定义

ff_h2645_extract_rbsp函数定义在libavcodec/h2645_parse.c中:

int ff_h2645_extract_rbsp(const uint8_t *src, int length,H2645RBSP *rbsp, H2645NAL *nal, int small_padding)
{int i, si, di;uint8_t *dst;nal->skipped_bytes = 0;
#define STARTCODE_TEST                                                  \if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     \if (src[i + 2] != 3 && src[i + 2] != 0) {                   \/* startcode, so we must be past the end */             \length = i;                                             \}                                                           \break;                                                      \}
#if HAVE_FAST_UNALIGNED
#define FIND_FIRST_ZERO                                                 \if (i > 0 && !src[i])                                           \i--;                                                        \while (src[i])                                                  \i++
#if HAVE_FAST_64BITfor (i = 0; i + 1 < length; i += 9) {if (!((~AV_RN64(src + i) &(AV_RN64(src + i) - 0x0100010001000101ULL)) &0x8000800080008080ULL))continue;FIND_FIRST_ZERO;STARTCODE_TEST;i -= 7;}
#elsefor (i = 0; i + 1 < length; i += 5) {if (!((~AV_RN32(src + i) &(AV_RN32(src + i) - 0x01000101U)) &0x80008080U))continue;FIND_FIRST_ZERO;STARTCODE_TEST;i -= 3;}
#endif /* HAVE_FAST_64BIT */
#elsefor (i = 0; i + 1 < length; i += 2) {if (src[i])continue;if (i > 0 && src[i - 1] == 0)i--;STARTCODE_TEST;}
#endif /* HAVE_FAST_UNALIGNED */if (i >= length - 1 && small_padding) { // no escaped 0nal->data     =nal->raw_data = src;nal->size     =nal->raw_size = length;return length;} else if (i > length)i = length;dst = &rbsp->rbsp_buffer[rbsp->rbsp_buffer_size];memcpy(dst, src, i);si = di = i;while (si + 2 < length) {// remove escapes (very rare 1:2^22)if (src[si + 2] > 3) {dst[di++] = src[si++];dst[di++] = src[si++];} else if (src[si] == 0 && src[si + 1] == 0 && src[si + 2] != 0) {if (src[si + 2] == 3) { // escapedst[di++] = 0;dst[di++] = 0;si       += 3;if (nal->skipped_bytes_pos) {nal->skipped_bytes++;if (nal->skipped_bytes_pos_size < nal->skipped_bytes) {nal->skipped_bytes_pos_size *= 2;av_assert0(nal->skipped_bytes_pos_size >= nal->skipped_bytes);av_reallocp_array(&nal->skipped_bytes_pos,nal->skipped_bytes_pos_size,sizeof(*nal->skipped_bytes_pos));if (!nal->skipped_bytes_pos) {nal->skipped_bytes_pos_size = 0;return AVERROR(ENOMEM);}}if (nal->skipped_bytes_pos)nal->skipped_bytes_pos[nal->skipped_bytes-1] = di - 1;}continue;} else // next start codegoto nsc;}dst[di++] = src[si++];}while (si < length)dst[di++] = src[si++];nsc:memset(dst + di, 0, AV_INPUT_BUFFER_PADDING_SIZE);nal->data = dst;nal->size = di;nal->raw_data = src;nal->raw_size = si;rbsp->rbsp_buffer_size += si;return si;
}

三、ff_h2645_extract_rbsp函数的内部实现原理分析

ff_h2645_extract_rbsp函数中存在如下代码:

int ff_h2645_extract_rbsp(const uint8_t *src, int length,H2645RBSP *rbsp, H2645NAL *nal, int small_padding)
{//...#define STARTCODE_TEST                                                  \if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     \if (src[i + 2] != 3 && src[i + 2] != 0) {                   \/* startcode, so we must be past the end */             \length = i;                                             \}                                                           \break;                                                      \}//...for (i = 0; i + 1 < length; i += 2) {if (src[i])continue;if (i > 0 && src[i - 1] == 0)i--;STARTCODE_TEST;}//...
}

其中STARTCODE_TEST是宏定义。将宏展开,上述代码相当于:

int ff_h2645_extract_rbsp(const uint8_t *src, int length,H2645RBSP *rbsp, H2645NAL *nal, int small_padding)
{//...for (i = 0; i + 1 < length; i += 2) {if (src[i])continue;if (i > 0 && src[i - 1] == 0)i--;if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     if (src[i + 2] != 3 && src[i + 2] != 0) {                   /* startcode, so we must be past the end */             length = i;                                             }                                                           break;                                                      }}//...
}

上述代码中,首先会通过语句:

    for (i = 0; i + 1 < length; i += 2) {if (src[i])continue;if (i > 0 && src[i - 1] == 0)i--;//...}

来判断H.264码流中是否存在ASCII 码为 0 (值为'\0')的的字符,如果存在则表明接下来的数据中可能会出现startcode(起始码)或防竞争字节。然后执行下面代码

if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     if (src[i + 2] != 3 && src[i + 2] != 0) {                   /* startcode, so we must be past the end */             length = i;                                             }                                                           break;                                                      
}

来判断是否是起始码,如果是起始码或防竞争字节就通过break;跳出循环。

继续执行语句。满足下面条件,说明是防竞争字节:

else if (src[si] == 0 && src[si + 1] == 0 && src[si + 2] != 0) {if (src[si + 2] == 3) { // escape//...
}

如果是防竞争字节,通过下面语句去掉防竞争字节:

dst[di++] = 0;dst[di++] = 0;si       += 3;
//...

如果不满足条件if (src[si + 2] == 3),说明遇到下一个起始码,表示这个NALU结束了。执行else语句,跳转到“nsc”:

if (src[si + 2] == 3) { // escape
//...
}
else // next start codegoto nsc;
//...

跳转到“nsc”后,给输出型参数赋值,并返回。

nsc:memset(dst + di, 0, AV_INPUT_BUFFER_PADDING_SIZE);nal->data = dst;nal->size = di;nal->raw_data = src;nal->raw_size = si;rbsp->rbsp_buffer_size += si;return si;

四、通过修改ff_h2645_extract_rbsp函数降低FFmpeg转码时的cpu使用率

由于ff_h2645_extract_rbsp函数在H.264/H.265的解码时被调用。所以理论上修改该函数(使用算法优化,用空间换时间等策略)可以降低FFmpeg转码时的cpu使用率。具体可以参考:Imagine Computing创新技术大赛赛道2参赛攻略 - 007gzs

这篇关于FFmpeg源码:ff_h2645_extract_rbsp函数分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079209

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原