Matlab数学建模实战应用:案例2 - 传染病传播

2024-06-20 19:36

本文主要是介绍Matlab数学建模实战应用:案例2 - 传染病传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、问题分析

二、模型建立

三、Matlab代码实现

四、模型验证

灵敏度分析

五、模型应用

实例总结

总结


前言

传染病传播模型是公共卫生和流行病学的重要研究内容,通过数学建模可以帮助我们理解传染病的传播规律和趋势,以便制定有效的防控策略。本文将详细介绍一个传染病传播案例,包括问题分析、模型建立、Matlab代码实现、模型验证和模型应用。

一、问题分析

  1. 传染病传播途径

    • 传染病通过直接接触、空气传播、飞沫传播等途径在人群中传播。
  2. 影响因素

    • 传染率(β):指每个传染者在单位时间内使易感者受感染的平均次数。
    • 治愈率(γ):指每个感染者在单位时间内恢复或死亡的概率。
    • 人口结构、社会活动、卫生条件等也对传播过程有影响。
  3. 预测目标

    • 建立数学模型,模拟传染病在特定人群中的传播过程,预测未来感染者和恢复者人数。

二、模型建立

以下表格总结了SIR和SEIR模型的基本特点:

模型类型组分主要参数微分方程
SIR模型易感者 (S)传染率 (β), 治愈率 (γ)
 
SEIR模型易感者 (S), 潜伏期 (E)传染率 (β), 治愈率 (γ),潜伏期转化率 (σ)

 

三、Matlab代码实现

以下是使用Matlab模拟SIR和SEIR模型的完整代码示例。

  1. SIR模型

1.1 定义和初始化参数:

% SIR模型参数
beta = 0.3;   % 传染率
gamma = 0.1;  % 治愈率
N = 1000;     % 总人口
I0 = 1;       % 初始感染者
R0 = 0;       % 初始恢复者
S0 = N - I0 - R0; % 初始易感者% 定义微分方程
sir_model = @(t, y) [-beta * y(1) * y(2) / N; beta * y(1) * y(2) / N - gamma * y(2); gamma * y(2)
];% 初始条件
y0 = [S0, I0, R0];% 求解微分方程
[t, y] = ode45(sir_model, [0, 160], y0);% 绘制结果
figure;
plot(t, y(:,1), 'b', 'LineWidth', 2);
hold on;
plot(t, y(:,2), 'r', 'LineWidth', 2);
plot(t, y(:,3), 'g', 'LineWidth', 2);
legend('Susceptible', 'Infected', 'Recovered');
xlabel('Time (days)');
ylabel('Number of People');
title('SIR Model');
grid on;
  1. SEIR模型

2.1 定义和初始化参数:

% SEIR模型参数
beta = 0.3;   % 传染率
gamma = 0.1;  % 治愈率
sigma = 0.2;  % 潜伏期转化率
N = 1000;     % 总人口
E0 = 0;       % 初始潜伏者
I0 = 1;       % 初始感染者
R0 = 0;       % 初始恢复者
S0 = N - E0 - I0 - R0; % 初始易感者% 定义微分方程
seir_model = @(t, y) [-beta * y(1) * y(3) / N;beta * y(1) * y(3) / N - sigma * y(2);sigma * y(2) - gamma * y(3);gamma * y(3)
];% 初始条件
y0 = [S0, E0, I0, R0];% 求解微分方程
[t, y] = ode45(seir_model, [0, 160], y0);% 绘制结果
figure;
plot(t, y(:,1), 'b', 'LineWidth', 2);
hold on;
plot(t, y(:,2), 'm', 'LineWidth', 2);
plot(t, y(:,3), 'r', 'LineWidth', 2);
plot(t, y(:,4), 'g', 'LineWidth', 2);
legend('Susceptible', 'Exposed', 'Infected', 'Recovered');
xlabel('Time (days)');
ylabel('Number of People');
title('SEIR Model');
grid on;

四、模型验证

我们可以通过以下几方面验证模型的合理性:

  1. 使用实际数据验证模型
    • 收集实际疾病传播数据,将其与模型预测结果进行比较,计算均方误差(MSE)和平均绝对误差(MAE)等指标。

    % 假设有一个实际数据集 actual_data[actual_time, actual_infected] = load('actual_data.mat');% 插值实际数据,使其与模型时间点对齐actual_infected_interp = interp1(actual_time, actual_infected, t);% 计算误差MAE = mean(abs(actual_infected_interp - y(:,2)));MSE = mean((actual_infected_interp - y(:,2)).^2);disp(['Mean Absolute Error: ', num2str(MAE)]);disp(['Mean Squared Error: ', num2str(MSE)]);
灵敏度分析

灵敏度分析涉及对模型的主要参数进行调整,并观察这些变化对模型结果的影响。以下是对传染率(β)和治愈率(γ)进行灵敏度分析的实现示例。

  1. 分析传染率(β)的变化

% 修改beta参数
beta_values = [0.2, 0.3, 0.4];
figure;
for i = 1:length(beta_values)beta = beta_values(i);sir_model = @(t, y) [-beta * y(1) * y(2) / N;beta * y(1) * y(2) / N - gamma * y(2);gamma * y(2)];[t, y] = ode45(sir_model, [0, 160], y0);plot(t, y(:,2), 'LineWidth', 2);hold on;
end
legend('β=0.2', 'β=0.3', 'β=0.4', 'Location', 'Best');
xlabel('Time (days)');
ylabel('Number of Infected People');
title('Sensitivity Analysis of Infection Rate (β)');
grid on;

  1. 分析治愈率(γ)的变化

% 修改gamma参数
gamma_values = [0.05, 0.1, 0.15];
figure;
for i = 1:length(gamma_values)gamma = gamma_values(i);sir_model = @(t, y) [-beta * y(1) * y(2) / N;beta * y(1) * y(2) / N - gamma * y(2);gamma * y(2)];[t, y] = ode45(sir_model, [0, 160], y0);plot(t, y(:,2), 'LineWidth', 2);hold on;
end
legend('γ=0.05', 'γ=0.1', 'γ=0.15', 'Location', 'Best');
xlabel('Time (days)');
ylabel('Number of Infected People');
title('Sensitivity Analysis of Recovery Rate (γ)');
grid on;

通过灵敏度分析,我们可以发现不同的传染率和治愈率对感染者人数和传播曲线的影响。这有助于决策者理解在不同条件下疫情的可能发展趋势,并采取更为针对性的干预措施。

五、模型应用

传染病模型不仅能够对疫情发展进行预测,还能够用于疫情防控和政策制定。以下是模型应用的几个方面:

  1. 疫情趋势预测
    • 使用SIR或SEIR模型进行未来的疫情发展预测,帮助公共卫生部门提前做好应对措施。

    % 使用SEIR模型预测未来疫情趋势future_time_span = [0, 300];[t_future, y_future] = ode45(seir_model, future_time_span, y0);% 绘制预测结果figure;plot(t_future, y_future(:,1), 'b', 'LineWidth', 2);hold on;plot(t_future, y_future(:,2), 'm', 'LineWidth', 2);plot(t_future, y_future(:,3), 'r', 'LineWidth', 2);plot(t_future, y_future(:,4), 'g', 'LineWidth', 2);legend('Susceptible', 'Exposed', 'Infected', 'Recovered');xlabel('Time (days)');ylabel('Number of People');title('SEIR Model - Long Term Prediction');grid on;

  1. 政策效果评估
    • 模型可以用于评估不同防控措施的效果,例如隔离政策、疫苗接种等,通过模拟不同措施下的疫情发展,找到最优方案。

    % 模拟隔离措施的效果(降低传染率)beta_quarantine = 0.1;  % 采取隔离措施后的传染率seir_model_quarantine = @(t, y) [-beta_quarantine * y(1) * y(3) / N;beta_quarantine * y(1) * y(3) / N - sigma * y(2);sigma * y(2) - gamma * y(3);gamma * y(3)];[t_quarantine, y_quarantine] = ode45(seir_model_quarantine, future_time_span, y0);% 绘制对比图figure;plot(t_future, y_future(:,3), 'r', 'LineWidth', 2);  % 无隔离的感染者曲线hold on;plot(t_quarantine, y_quarantine(:,3), 'b', 'LineWidth', 2);  % 隔离的感染者曲线legend('No Quarantine', 'With Quarantine');xlabel('Time (days)');ylabel('Number of Infected People');title('Impact of Quarantine on Infection Spread');grid on;

  1. 医疗资源配置
    • 根据预测结果,合理配置医疗资源,如病床、医护人员、药品等,以应对疫情高峰期的需求。

    % 预测未来某一时期的重症患者人数(假设 10% 的感染者会成为重症)severe_case_ratio = 0.1;predicted_severe_cases = y_future(:,3) * severe_case_ratio;% 绘制重症患者人数预测图figure;plot(t_future, predicted_severe_cases, 'r', 'LineWidth', 2);xlabel('Time (days)');ylabel('Number of Severe Cases');title('Prediction of Severe Cases');grid on;

实例总结

通过上述步骤和实例,我们展示了如何使用SIR和SEIR模型模拟传染病传播的全过程,包括模型建立、灵敏度分析、模型验证和应用。以下是该实例总结:

步骤说明示例代码
问题分析分析传染病的传播途径及影响因素-
模型建立建立SIR和SEIR模型sir_model = @(t, y) ...
数据导入定义模型参数和初始条件beta = 0.3; gamma = 0.1; N = 1000;
模型训练使用微分方程求解器求解模型[t, y] = ode45(sir_model, [0, 160], y0);
模型验证使用实际数据验证模型,进行灵敏度分析actual_databeta_valuesgamma_values
模型应用预测疫情趋势,评估防控政策效果,合理配置医疗资源future_time_spanbeta_quarantine

总结

本文详细介绍了如何使用Matlab进行传染病传播建模,包括SIR和SEIR模型的建立、代码实现、灵敏度分析和模型验证。通过实际案例,我们展示了如何将传染病模型应用于疫情预测、政策效果评估和医疗资源配置等方面。

这篇关于Matlab数学建模实战应用:案例2 - 传染病传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079059

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

线程池ThreadPoolExecutor应用过程

《线程池ThreadPoolExecutor应用过程》:本文主要介绍如何使用ThreadPoolExecutor创建线程池,包括其构造方法、常用方法、参数校验以及如何选择合适的拒绝策略,文章还讨论... 目录ThreadPoolExecutor构造说明及常用方法为什么强制要求使用ThreadPoolExec

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什