Matlab数学建模实战应用:案例2 - 传染病传播

2024-06-20 19:36

本文主要是介绍Matlab数学建模实战应用:案例2 - 传染病传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、问题分析

二、模型建立

三、Matlab代码实现

四、模型验证

灵敏度分析

五、模型应用

实例总结

总结


前言

传染病传播模型是公共卫生和流行病学的重要研究内容,通过数学建模可以帮助我们理解传染病的传播规律和趋势,以便制定有效的防控策略。本文将详细介绍一个传染病传播案例,包括问题分析、模型建立、Matlab代码实现、模型验证和模型应用。

一、问题分析

  1. 传染病传播途径

    • 传染病通过直接接触、空气传播、飞沫传播等途径在人群中传播。
  2. 影响因素

    • 传染率(β):指每个传染者在单位时间内使易感者受感染的平均次数。
    • 治愈率(γ):指每个感染者在单位时间内恢复或死亡的概率。
    • 人口结构、社会活动、卫生条件等也对传播过程有影响。
  3. 预测目标

    • 建立数学模型,模拟传染病在特定人群中的传播过程,预测未来感染者和恢复者人数。

二、模型建立

以下表格总结了SIR和SEIR模型的基本特点:

模型类型组分主要参数微分方程
SIR模型易感者 (S)传染率 (β), 治愈率 (γ)
 
SEIR模型易感者 (S), 潜伏期 (E)传染率 (β), 治愈率 (γ),潜伏期转化率 (σ)

 

三、Matlab代码实现

以下是使用Matlab模拟SIR和SEIR模型的完整代码示例。

  1. SIR模型

1.1 定义和初始化参数:

% SIR模型参数
beta = 0.3;   % 传染率
gamma = 0.1;  % 治愈率
N = 1000;     % 总人口
I0 = 1;       % 初始感染者
R0 = 0;       % 初始恢复者
S0 = N - I0 - R0; % 初始易感者% 定义微分方程
sir_model = @(t, y) [-beta * y(1) * y(2) / N; beta * y(1) * y(2) / N - gamma * y(2); gamma * y(2)
];% 初始条件
y0 = [S0, I0, R0];% 求解微分方程
[t, y] = ode45(sir_model, [0, 160], y0);% 绘制结果
figure;
plot(t, y(:,1), 'b', 'LineWidth', 2);
hold on;
plot(t, y(:,2), 'r', 'LineWidth', 2);
plot(t, y(:,3), 'g', 'LineWidth', 2);
legend('Susceptible', 'Infected', 'Recovered');
xlabel('Time (days)');
ylabel('Number of People');
title('SIR Model');
grid on;
  1. SEIR模型

2.1 定义和初始化参数:

% SEIR模型参数
beta = 0.3;   % 传染率
gamma = 0.1;  % 治愈率
sigma = 0.2;  % 潜伏期转化率
N = 1000;     % 总人口
E0 = 0;       % 初始潜伏者
I0 = 1;       % 初始感染者
R0 = 0;       % 初始恢复者
S0 = N - E0 - I0 - R0; % 初始易感者% 定义微分方程
seir_model = @(t, y) [-beta * y(1) * y(3) / N;beta * y(1) * y(3) / N - sigma * y(2);sigma * y(2) - gamma * y(3);gamma * y(3)
];% 初始条件
y0 = [S0, E0, I0, R0];% 求解微分方程
[t, y] = ode45(seir_model, [0, 160], y0);% 绘制结果
figure;
plot(t, y(:,1), 'b', 'LineWidth', 2);
hold on;
plot(t, y(:,2), 'm', 'LineWidth', 2);
plot(t, y(:,3), 'r', 'LineWidth', 2);
plot(t, y(:,4), 'g', 'LineWidth', 2);
legend('Susceptible', 'Exposed', 'Infected', 'Recovered');
xlabel('Time (days)');
ylabel('Number of People');
title('SEIR Model');
grid on;

四、模型验证

我们可以通过以下几方面验证模型的合理性:

  1. 使用实际数据验证模型
    • 收集实际疾病传播数据,将其与模型预测结果进行比较,计算均方误差(MSE)和平均绝对误差(MAE)等指标。

    % 假设有一个实际数据集 actual_data[actual_time, actual_infected] = load('actual_data.mat');% 插值实际数据,使其与模型时间点对齐actual_infected_interp = interp1(actual_time, actual_infected, t);% 计算误差MAE = mean(abs(actual_infected_interp - y(:,2)));MSE = mean((actual_infected_interp - y(:,2)).^2);disp(['Mean Absolute Error: ', num2str(MAE)]);disp(['Mean Squared Error: ', num2str(MSE)]);
灵敏度分析

灵敏度分析涉及对模型的主要参数进行调整,并观察这些变化对模型结果的影响。以下是对传染率(β)和治愈率(γ)进行灵敏度分析的实现示例。

  1. 分析传染率(β)的变化

% 修改beta参数
beta_values = [0.2, 0.3, 0.4];
figure;
for i = 1:length(beta_values)beta = beta_values(i);sir_model = @(t, y) [-beta * y(1) * y(2) / N;beta * y(1) * y(2) / N - gamma * y(2);gamma * y(2)];[t, y] = ode45(sir_model, [0, 160], y0);plot(t, y(:,2), 'LineWidth', 2);hold on;
end
legend('β=0.2', 'β=0.3', 'β=0.4', 'Location', 'Best');
xlabel('Time (days)');
ylabel('Number of Infected People');
title('Sensitivity Analysis of Infection Rate (β)');
grid on;

  1. 分析治愈率(γ)的变化

% 修改gamma参数
gamma_values = [0.05, 0.1, 0.15];
figure;
for i = 1:length(gamma_values)gamma = gamma_values(i);sir_model = @(t, y) [-beta * y(1) * y(2) / N;beta * y(1) * y(2) / N - gamma * y(2);gamma * y(2)];[t, y] = ode45(sir_model, [0, 160], y0);plot(t, y(:,2), 'LineWidth', 2);hold on;
end
legend('γ=0.05', 'γ=0.1', 'γ=0.15', 'Location', 'Best');
xlabel('Time (days)');
ylabel('Number of Infected People');
title('Sensitivity Analysis of Recovery Rate (γ)');
grid on;

通过灵敏度分析,我们可以发现不同的传染率和治愈率对感染者人数和传播曲线的影响。这有助于决策者理解在不同条件下疫情的可能发展趋势,并采取更为针对性的干预措施。

五、模型应用

传染病模型不仅能够对疫情发展进行预测,还能够用于疫情防控和政策制定。以下是模型应用的几个方面:

  1. 疫情趋势预测
    • 使用SIR或SEIR模型进行未来的疫情发展预测,帮助公共卫生部门提前做好应对措施。

    % 使用SEIR模型预测未来疫情趋势future_time_span = [0, 300];[t_future, y_future] = ode45(seir_model, future_time_span, y0);% 绘制预测结果figure;plot(t_future, y_future(:,1), 'b', 'LineWidth', 2);hold on;plot(t_future, y_future(:,2), 'm', 'LineWidth', 2);plot(t_future, y_future(:,3), 'r', 'LineWidth', 2);plot(t_future, y_future(:,4), 'g', 'LineWidth', 2);legend('Susceptible', 'Exposed', 'Infected', 'Recovered');xlabel('Time (days)');ylabel('Number of People');title('SEIR Model - Long Term Prediction');grid on;

  1. 政策效果评估
    • 模型可以用于评估不同防控措施的效果,例如隔离政策、疫苗接种等,通过模拟不同措施下的疫情发展,找到最优方案。

    % 模拟隔离措施的效果(降低传染率)beta_quarantine = 0.1;  % 采取隔离措施后的传染率seir_model_quarantine = @(t, y) [-beta_quarantine * y(1) * y(3) / N;beta_quarantine * y(1) * y(3) / N - sigma * y(2);sigma * y(2) - gamma * y(3);gamma * y(3)];[t_quarantine, y_quarantine] = ode45(seir_model_quarantine, future_time_span, y0);% 绘制对比图figure;plot(t_future, y_future(:,3), 'r', 'LineWidth', 2);  % 无隔离的感染者曲线hold on;plot(t_quarantine, y_quarantine(:,3), 'b', 'LineWidth', 2);  % 隔离的感染者曲线legend('No Quarantine', 'With Quarantine');xlabel('Time (days)');ylabel('Number of Infected People');title('Impact of Quarantine on Infection Spread');grid on;

  1. 医疗资源配置
    • 根据预测结果,合理配置医疗资源,如病床、医护人员、药品等,以应对疫情高峰期的需求。

    % 预测未来某一时期的重症患者人数(假设 10% 的感染者会成为重症)severe_case_ratio = 0.1;predicted_severe_cases = y_future(:,3) * severe_case_ratio;% 绘制重症患者人数预测图figure;plot(t_future, predicted_severe_cases, 'r', 'LineWidth', 2);xlabel('Time (days)');ylabel('Number of Severe Cases');title('Prediction of Severe Cases');grid on;

实例总结

通过上述步骤和实例,我们展示了如何使用SIR和SEIR模型模拟传染病传播的全过程,包括模型建立、灵敏度分析、模型验证和应用。以下是该实例总结:

步骤说明示例代码
问题分析分析传染病的传播途径及影响因素-
模型建立建立SIR和SEIR模型sir_model = @(t, y) ...
数据导入定义模型参数和初始条件beta = 0.3; gamma = 0.1; N = 1000;
模型训练使用微分方程求解器求解模型[t, y] = ode45(sir_model, [0, 160], y0);
模型验证使用实际数据验证模型,进行灵敏度分析actual_databeta_valuesgamma_values
模型应用预测疫情趋势,评估防控政策效果,合理配置医疗资源future_time_spanbeta_quarantine

总结

本文详细介绍了如何使用Matlab进行传染病传播建模,包括SIR和SEIR模型的建立、代码实现、灵敏度分析和模型验证。通过实际案例,我们展示了如何将传染病模型应用于疫情预测、政策效果评估和医疗资源配置等方面。

这篇关于Matlab数学建模实战应用:案例2 - 传染病传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1079059

相关文章

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt