Dockerfile封装制作pytorch(tensorflow)深度学习框架 + jupyterlab服务 + ssh服务镜像

本文主要是介绍Dockerfile封装制作pytorch(tensorflow)深度学习框架 + jupyterlab服务 + ssh服务镜像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一:docker-hub官网寻找需求镜像

1.我们在https://hub.docker.com/官网找到要封装的pytorch基础镜像,这里我们以pytorch1.13.1版本为例

2.我们找到的这个devel版本的镜像(我们需要cuda的编译工具)

pytorch版本是1.13.1,cuda版本是11.6,cudnn gpu加速库的版本是8版本(ubuntu系统已经封装在镜像里了,一会启动时候就可以去判断系统版本是多少了

3.runtime和devel版本的区别解释:

1.13.1-cuda11.6-cudnn8-devel:
devel 是 "development" 的缩写,表示这是一个开发版本。
这个版本包含了开发深度学习应用所需的工具和库,比如编译器、头文件、静态库等。
适用于需要编译和开发深度学习应用的场景。1.13.1-cuda11.6-cudnn8-runtime:
runtime 表示这是一个运行时版本。
这个版本主要包含运行深度学习应用所需的库和二进制文件,但不包含开发工具和头文件。
适用于只需要运行预编译的深度学习模型或应用的场景。为什么一个大一个小?
内容不同:
devel 版本包含了更多的开发工具、头文件和静态库,这些文件在编译和开发过程中是必需的,但在运行时并不需要。
runtime 版本只包含运行时所需的库和二进制文件,省去了开发工具和头文件,因此体积更小。用途不同:
devel 版本适用于开发环境,你可以在这个环境中编译和调试深度学习应用。
runtime 版本适用于生产环境或部署环境,你只需要运行已经开发好的深度学习应用。具体区别
包含的文件:
devel 版本:包含 CUDA 编译器(nvcc)、开发工具(如 gdb、profiler)、头文件(如 .h 文件)、静态库(如 .a 文件)以及所有的运行时库。
runtime 版本:仅包含运行时库(如 .so 文件)和必要的二进制文件。使用场景:
devel 版本:适用于需要编译和开发的场景,如开发新模型、编写自定义 CUDA 内核等。
runtime 版本:适用于部署和运行已经编译好的模型和应用,如在生产环境中运行深度学习推理服务。总结
选择哪个版本取决于你的需求:
如果你需要开发和编译深度学习应用,选择 devel 版本。
如果你只需要运行已经开发好的深度学习应用,选择 runtime 版本。

二:拉取基础镜像

1.复制拉取命令

2.服务器上拉取基础镜像

docker pull pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel

3.配置docker守护进程加速

最近dockerhub还有一些国内镜像加速源都都不好用了,这里建议走代理服务器或者给docker守护进程配置代理:

Linux服务器开启临时外网全局代理-CSDN博客

或者:

docker守护进程配置代理-CSDN博客

三:编写我们的dockerfile文件内容

需求描述:

(1)我们镜像里要求已安装好我们要用到的命令和python包等等:

## 更新包列表并安装基本工具
apt-get update && apt-get install -y \sudo \wget \curl \vim \python3 \python3-pip \openssh-server \openssh-client && \rm -rf /var/lib/apt/lists/*

(2)要求python命令指向python3:

# 设置 python 命令指向 python3
ln -s /usr/bin/python3 /usr/bin/python

(3)要求修改pip源为阿里云镜像源:

mkdir -p /root/.pip \&& echo "[global]" > /root/.pip/pip.conf \&& echo "index-url = https://mirrors.aliyun.com/pypi/simple/" >> /root/.pip/pip.conf \&& echo "trusted-host = mirrors.aliyun.com" >> /root/.pip/pip.con

(4)要求安装并启动ssh和jupyter-lab服务,这里我们通过外挂启动脚本实现:

# 将启动脚本配置在容器中
COPY setup.sh /setup.sh       # 本地目录拷贝启动脚本到容器内/目录下
RUN chmod +x /setup.sh        # 使用启动脚本作为容器初始化入口
ENTRYPOINT ["/setup.sh"]

(5)防止宿主机不同型号gpu导致的cuda调用异常,需要封装PyTorch NVML 基于 CUDA 检查环境变量:

ENV PYTORCH_NVML_BASED_CUDA_CHECK=1

完整的dockerfile文件内容:

vim torch1.13.1_dockerfile
# 定义基础镜像
FROM pytorch/pytorch:1.13.1-cuda11.6-cudnn8-devel# 设置非互动模式以避免一些安装过程中的对话框
ENV DEBIAN_FRONTEND=noninteractive# 删除无效的 Nvidia 存储库(如果它存在的话)
#RUN rm /etc/apt/sources.list.d/cuda.list || true
#RUN rm /etc/apt/sources.list.d/nvidia-ml.list || true# 更新包列表并安装基本工具
RUN apt-get update && apt-get install -y \sudo \wget \curl \vim \python3 \python3-pip \openssh-server \openssh-client && \rm -rf /var/lib/apt/lists/*# 添加NVIDIA存储库和公钥
#RUN distribution=$(. /etc/os-release;echo $ID$VERSION_ID) && \
#    curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | apt-key add - && \
#    curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | tee /etc/apt/sources.list.d/nvidia-docker.list && \
#    apt-get update && apt-get install -y nvidia-container-toolkit && \
#    rm -rf /var/lib/apt/lists/*# 设置 python 命令指向 python3
RUN ln -s /usr/bin/python3 /usr/bin/python# 修改 pip 源为阿里云镜像源
RUN mkdir -p /root/.pip \&& echo "[global]" > /root/.pip/pip.conf \&& echo "index-url = https://mirrors.aliyun.com/pypi/simple/" >> /root/.pip/pip.conf \&& echo "trusted-host = mirrors.aliyun.com" >> /root/.pip/pip.conf# 设置 CUDA 环境变量
#ENV CUDA_VERSION=11.6
#ENV CUDA_HOME=/usr/local/cuda-$CUDA_VERSION
#ENV PATH=$CUDA_HOME/bin:$PATH
#ENV LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH# 设置 PyTorch NVML 基于 CUDA 检查环境变量
ENV PYTORCH_NVML_BASED_CUDA_CHECK=1# 声明暴露 SSH 和 Jupyter Lab 端口
EXPOSE 22
EXPOSE 8888# 将启动脚本配置在容器中
COPY setup.sh /setup.sh
RUN chmod +x /setup.sh# 使用启动脚本作为容器初始化入口
ENTRYPOINT ["/setup.sh"]

完整的setup.sh启动脚本内容:

vim setup.sh
#!/bin/bash# 设置清华源,如果尚未设置阿里源
if ! pip config get global.index-url | grep -q "https://pypi.tuna.tsinghua.edu.cn/simple"; thenecho "设置 pip 使用清华源..."pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
fi# 检查 JupyterLab 是否已安装
if ! pip show jupyterlab > /dev/null 2>&1; thenecho "安装 JupyterLab..."pip install jupyterlab
elseecho "JupyterLab 已安装,跳过安装步骤。"
fi# 为 SSHD 创建必要的目录
echo "创建 SSHD 必要的目录..."
mkdir -p /var/run/sshd
mkdir -p /root/.ssh# 为 Jupyter Lab 创建工作目录
if [ ! -d /root/workspace ]; thenecho "创建 Jupyter Lab 工作目录..."mkdir -p /root/workspacechown -R root:root /root/workspace
fi# 如果 authorized_keys 文件不存在,则创建它
if [ ! -f /root/.ssh/authorized_keys ]; thenecho "创建 authorized_keys 文件..."touch /root/.ssh/authorized_keyschmod 600 /root/.ssh/authorized_keyschown -R root:root /root/.ssh
fi# 配置 sshd 服务,如果尚未配置
if [ ! -f /etc/ssh/sshd_config ]; thenecho "配置 SSHD 服务..."cat <<EOF > /etc/ssh/sshd_config
Port 22
PermitRootLogin yes
PubkeyAuthentication yes
AuthorizedKeysFile .ssh/authorized_keys
PasswordAuthentication yes
ChallengeResponseAuthentication no
UsePAM yes
X11Forwarding yes
PrintMotd no
AcceptEnv LANG LC_*
Subsystem sftp /usr/lib/openssh/sftp-server
EOF# 生成 sshd 主机密钥echo "生成 SSHD 主机密钥..."ssh-keygen -A
elseecho "SSHD 服务已经配置,跳过配置步骤。"
fi# 检查 SSHD 服务是否正在运行,如果不是则启动
if ! pgrep -x "sshd" > /dev/null; thenecho "启动 SSHD 服务..."/usr/sbin/sshd
elseecho "SSHD 服务已经运行,跳过启动步骤。"
fi# 检查 JupyterLab 服务是否已经启动
if ! pgrep -f "jupyter-lab" > /dev/null; thenecho "启动 JupyterLab..."nohup jupyter lab --ip=0.0.0.0 --allow-root --no-browser --notebook-dir=/root/workspace >/dev/null 2>&1 &
elseecho "JupyterLab 已在运行,跳过启动步骤。"
fi# 添加一个阻塞进程,保持容器运行
echo "容器已启动并运行,阻止脚本退出以保持容器运行..."
tail -f /dev/null

四:构建镜像

以咱们刚才编辑好的dockerfile和setup.sh构建镜像

docker build -t ubuntu18.04_pytorch1.13.1 -f torch1.13.1_dockerfile . 

构建成功,启动镜像测试

五:测试镜像

(1)运行镜像测试:

docker run -d -p 2255:22 5858:8888 ubuntu18.04_pytorch1.13.1

(2)查看镜像是否正常启动并找到docker id 进入容器内部测试:

docker ps | grep torch

(3)进入容器内部查看python,ubuntu,cuda和gpu的版本,显卡型号等等信息:

 docker exec -it  8b80ab67bcd3 bash
cat /etc/lsb-release

nvidia-smi   ## 可以看到咱们容器内部可以读取到宿主机的显卡型号为4090,显卡驱动版本为550.54.14 

 python --version

nvcc --version  ## 验证cuda版本

(3)测试ssh和jupyterlab功能和服务是否正常:

浏览器访问宿主机ip+5885端口,并查看容器内部进程,jupyterlab是否正常安装启动

(4)使用python和pytorch测试pytorch是否正常,是否可以正常调用cuda和宿主机GPU:

测试脚本内容:

import torchdef test_torch_cuda():print("Checking PyTorch and CUDA installation...")# 检查 PyTorch 版本print(f"PyTorch version: {torch.__version__}")# 检查是否可以调用 CUDAif torch.cuda.is_available():print("CUDA is available.")else:print("CUDA is not available.")return# 检查 CUDA 版本cuda_version = torch.version.cudaprint(f"CUDA version: {cuda_version}")# 检查 GPU 的数量gpu_count = torch.cuda.device_count()print(f"Number of GPUs: {gpu_count}")for i in range(gpu_count):print(f"GPU {i}: {torch.cuda.get_device_name(i)}")# 获取 GPU 的计算能力capability = torch.cuda.get_device_capability(i)print(f"  Compute capability: {capability[0]}.{capability[1]}")# 获取 GPU 显存信息mem_info = torch.cuda.get_device_properties(i).total_memory / (1024 ** 3)  # 单位GBprint(f"  Total memory: {mem_info:.2f} GB")if __name__ == "__main__":test_torch_cuda()

六:测试全部通过,镜像封装测试通过,推送私有docker-hub

(1)其他例如pytorch的其他版本,tensorflow等等,百度的paddlepaddle飞浆等大模型镜像的封装办法也一样,只需要修改基础镜像部分配置就可以:

剩下镜像里安装的工具包,环境变量按需配置。

(2)推送私有镜像仓库备用

docker tag ubuntu18.04_pytorch1.13.1:latest harbor.prohub.net/library/ubuntu18.04_pytorch1.13.1:latestdocker push  harbor.prohub.net/library/ubuntu18.04_pytorch1.13.1:latest

这篇关于Dockerfile封装制作pytorch(tensorflow)深度学习框架 + jupyterlab服务 + ssh服务镜像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1077688

相关文章

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

C++ HTTP框架推荐(特点及优势)

《C++HTTP框架推荐(特点及优势)》:本文主要介绍C++HTTP框架推荐的相关资料,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Crow2. Drogon3. Pistache4. cpp-httplib5. Beast (Boos

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

SpringCloud整合MQ实现消息总线服务方式

《SpringCloud整合MQ实现消息总线服务方式》:本文主要介绍SpringCloud整合MQ实现消息总线服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、背景介绍二、方案实践三、升级版总结一、背景介绍每当修改配置文件内容,如果需要客户端也同步更新,