图卷积网络(Graph Convolutional Network, GCN)

2024-06-19 22:28

本文主要是介绍图卷积网络(Graph Convolutional Network, GCN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图卷积网络(Graph Convolutional Network, GCN)是一种用于处理图结构数据的深度学习模型。GCN编码器的核心思想是通过邻接节点的信息聚合来更新节点表示。

图的表示

一个图 G通常表示为 G=(V,E),其中:

  • V 是节点集合,包含 N个节点。
  • E是边集合,包含图中所有的边。

节点特征矩阵

假设每个节点 i有一个特征向量 x_i(维度为 F),所有节点的特征可以表示为矩阵 \mathbf{X} \in \mathbb{R}^{N \times F}

邻接矩阵

图的邻接矩阵 \mathbf{A} \in \mathbb{R}^{N \times N}表示图中节点之间的连接关系,其中 \mathbf{A}_{ij} = 1表示节点 i和节点 j之间有边,反之为 0。

度矩阵

度矩阵\mathbf{D} \in \mathbb{R}^{N \times N}是一个对角矩阵,其中 \mathbf{D}_{ii}表示节点 i的度,即节点 i的邻居数量: \mathbf{D}_{ii} = \sum_{j} \mathbf{A}_{ij}

图卷积层

GCN编码器由多个图卷积层组成,每一层的运算可以描述为:

\mathbf{H}^{(l+1)} = \sigma\left( \mathbf{\tilde{D}}^{-\frac{1}{2}} \mathbf{\tilde{A}} \mathbf{\tilde{D}}^{-\frac{1}{2}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)

其中:

  • \mathbf{\tilde{A}} = \mathbf{A} + \mathbf{I},即在邻接矩阵A中加上自环(self-loop),其中 I是单位矩阵。
  • \mathbf{\tilde{D}} 是对应的度矩阵,计算方式与度矩阵 D类似,只不过这里考虑了自环。
  • \mathbf{H}^{(l)}是第 l层的节点表示矩阵,初始表示 \mathbf{H}^{(0)} = \mathbf{X}
  • \mathbf{W}^{(l)}是第 l层的权重矩阵。
  • σ 是非线性激活函数(例如ReLU)。

归一化的邻接矩阵

\mathbf{\hat{A}} = \mathbf{\tilde{D}}^{-\frac{1}{2}} \mathbf{\tilde{A}} \mathbf{\tilde{D}}^{-\frac{1}{2}}

因此,图卷积层的更新规则可以简化为:

\mathbf{H}^{(l+1)} = \sigma\left( \mathbf{\hat{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)

GCN通常由多层图卷积层堆叠而成。假设有 L层,那么经过 L 层图卷积后,最终的节点表示为 \mathbf{H}^{(L)}

聚合和更新

每一层的图卷积操作本质上是对每个节点的邻居节点信息进行聚合,然后通过线性变换和非线性激活函数进行更新。具体过程如下:

  1. 聚合邻居信息:使用归一化的邻接矩阵\mathbf{\hat{A}}对节点表示进行线性变换,得到聚合后的邻居信息。
  2. 线性变换:通过权重矩阵 \mathbf{W}^{(l)}对聚合后的邻居信息进行线性变换。
  3. 非线性激活:应用非线性激活函数 σ进行非线性变换。

最后

GCN编码器的结构可以通过如下递归公式表示:

\mathbf{H}^{(l+1)} = \sigma\left( \mathbf{\hat{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)

初始状态下 \mathbf{H}^{(0)} = \mathbf{X},经过 L层图卷积后,得到最终的节点表示 \mathbf{H}^{(L)}。每层的图卷积通过聚合邻居信息、线性变换和非线性激活来更新节点表示。

这篇关于图卷积网络(Graph Convolutional Network, GCN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1076321

相关文章

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为