opencv图像处理:三、图像阈值处理

2024-06-19 18:08

本文主要是介绍opencv图像处理:三、图像阈值处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介

这里主要介绍图像简单阈值处理,自适应阈值处理和Qtsu阈值处理。

二、简单阈值图像处理

简单阈值图像处理我们需要使用cv.threshold()函数,该函数第一个参数是图像数据(必须为灰度图),第二个参数为阈值,第三个参数为超过阈值的像素值的最大值,最后一个参数为二值化类型。
各种阈值类型计算原理如下:
在这里插入图片描述
以下为示例代码:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltimg = cv.imread('./img/gradient.png', 0)ret, thresh1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
ret, thresh2 = cv.threshold(img, 127, 255, cv.THRESH_BINARY_INV)
ret, thresh3 = cv.threshold(img, 127, 255, cv.THRESH_TRUNC)
ret, thresh4 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO)
ret, thresh5 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO_INV)titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]for i in range(6):plt.subplot(2,3,i+1),plt.imshow(images[i],'gray',vmin=0,vmax=255)plt.title(titles[i])plt.xticks([]),plt.yticks([])plt.show()

在这里插入图片描述

三、自适应阈值图像处理

简单阈值图像处理无法很好满足所有场景,比如有一张图片在不同的区域亮度不一样,这种情况自适应阈值图像处理就能更好的满足处理需求。自适应阈值图像处理需要使用cv.adaptiveThreshold()函数,以下为介绍其主要参数。

1、adaptiveMethod 参数决定如何计算阈值

  • cv.ADAPTIVE_THRESH_MEAN_C: 阈值是相邻面积的均值减去常数C。
  • cv.ADAPTIVE_THRESH_GAUSSIAN_C: 阈值是相邻值减去常数C的高斯加权和。

2、thresholdType参数在第二小节有介绍。
3、blockSize 该值相邻区域大小。
4、C 是一个常数,从邻近像素的平均值或加权和中减去。

以下为代码示例:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltimg = cv.imread('./img/sudoku.png', 0)
img = cv.medianBlur(img, 5)ret,th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
th2     = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 11, 2)
th3     = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 11, 2)
titles  = ['Original Image', 'Global Thresholding (v = 127)', 'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images  = [img, th1, th2, th3]for i in range(4):plt.subplot(2, 2, i + 1), plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([]), plt.yticks([])plt.show()

在这里插入图片描述

四、大津二值化(QTSU)

QTSU是日本学者大津提出的一种二值化处理图像算法,该算法是根据灰度图本身的信息,自动确定最佳阈值,实现以最佳阈值对灰度图进行二值化,一般用于将图片分割前景和背景。

在以下代码示例中,我们以一张带噪点的图片作为输入,以三种处理方式来做比对。第一种处理方式,直接使用全局阈值127来处理。第二种处理方式,我们用QTSU直接对图片进行处理。第三种处理方式,先通过5x5高斯核对图片进行过滤,然后在用QTSU对过滤后的图像进行处理。

以下是代码示例:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as pltimg = cv.imread('./img/noisy2.png', 0)# global thresholding
ret1,th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
# Otsu's thresholding
ret2,th2 = cv.threshold(img, 0, 255, cv.THRESH_BINARY+cv.THRESH_OTSU)# Otsu's thresholding after Gaussian filtering
blur = cv.GaussianBlur(img, (5,5), 0)
ret3,th3 = cv.threshold(blur, 0, 255, cv.THRESH_BINARY+cv.THRESH_OTSU)# plot all the images and their histograms
images = [img,  0, th1,img,  0, th2,blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)','Original Noisy Image','Histogram',"Otsu's Thresholding",'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]for i in range(3):plt.subplot(3,3,i*3+1),   plt.imshow(images[i*3],'gray')plt.title(titles[i*3]),   plt.xticks([]), plt.yticks([])plt.subplot(3,3,i*3+2),   plt.hist(images[i*3].ravel(),256)plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])plt.subplot(3,3,i*3+3),   plt.imshow(images[i*3+2],'gray')plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])plt.show()

在这里插入图片描述

这篇关于opencv图像处理:三、图像阈值处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075761

相关文章

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos