用深层神经网络识别猫咪图片:吴恩达Course1-神经网络与深度学习-week3week4作业

本文主要是介绍用深层神经网络识别猫咪图片:吴恩达Course1-神经网络与深度学习-week3week4作业,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码有参考吴恩达老师的源代码,神经网络的图片为转载,图片来源见水印

以下文件的【下载地址】,提取码:dv8a

所有文件存放位置
C:.
│  dnn_utils.py
│  building deep neural network:step by step.py
│  lr_utils.py
│  testCases.py
│
├─datasetstest_catvnoncat.h5test_image1.pngtest_image2.pngtrain_catvnoncat.h5

一些要点

神经网络的层数:指隐藏层+输出层的层数
二层神经网络:有一个输入层、一个隐藏层、一个输出层的神经网络
L层神经网络:有一个输入层、L-1个隐藏层、第L层为输出层的神经网络

——假如对于每个隐藏层,我们都使用[线性传播+同一非线性函数激活]的方式,则构建L层神经网络,无非是将二层神经网络对隐藏层的运算,重复L-1次

深层网络的参数初始化方式不同于二层网络,网络层次越高,越容易产生梯度消失/梯度爆炸现象,这里对深层网络使用Xaiver初始化(在网上看到很多同学的cost卡在0.64降不下去就是这个坑)


来自大佬的形象表达


深层网络的实现步骤

参数初始化-> [实现前向线性传播 -> 实现前向线性激活 -> 实现完整的前向传播] -> 计算成本 -> [实现反向线性传播 -> 实现反向线性激活 -> 实现完整的反向传播] -> 参数更新

这里会对比二层网络和深层网络的测试集准度,使用深层网络对本地图片进行识别


导入库

import numpy as np
from matplotlib import pyplot as plt
import testCases
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward
import lr_utils
# 测试本地图片时使用
import imageio
import cv2

设置随机种子并初始化

np.random.seed(1)
# 初始化[二层神经网络]的参数
def initialize_parameters(n_x, n_h, n_y):""":param n_x: x的特征数量:param n_h: 隐藏层节点数量:param n_y: 输出层的特征数量"""W1 = np.random.randn(n_h, n_x)*0.01b1 = np.zeros(shape=(n_h, 1))W2 = np.random.randn(n_y, n_h)*0.01b2 = np.zeros(shape=(n_y, 1))parameters = {'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}return parameters
# 初始化[深层神经网络]的参数
def initialize_parameters_deep(layer_dims):""":param layer_dims: 列表,从输入层至输出层,每层的节点数量"""parameters = {}L = len(layer_dims) - 1                         # 输出层的下标for l in range(1, L+1):# 使用Xaiver初始化,防止梯度消失或爆炸parameters['W'+str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])/np.sqrt(layer_dims[l - 1])parameters['b'+str(l)] = np.zeros(shape=(layer_dims[l], 1))return parameters

前向传播

# 前向传播中的线性传播
def linear_forward(A_prev, W, b):""":param A_prev: 上一层传递到本层的A:param W: 本层的权重矩阵:param b: 本层的偏置项:return: 本层计算的Z"""Z = np.dot(W, A_prev) + bcache = (A_prev, W, b)assert(Z.shape==(W.shape[0], A_prev.shape[1]))return Z, cache
# 前向传播中的线性激活
def linear_and_activation_forward(A_prev, W, b, activation='relu'):""":param activation: 字符串,激活函数名称"""Z, linear_cache = linear_forward(A_prev, W, b)# 按激活函数执行激活步骤if activation == 'sigmoid':A, activation_cache = sigmoid(Z)            # 缓存的是Zelif activation == 'relu':A, activation_cache = relu(Z)assert(A.shape==Z.shape)cache = (linear_cache, activation_cache)return A, cache
# 完整的前向传播
def L_model_forward(X, parameters):caches = []A =<

这篇关于用深层神经网络识别猫咪图片:吴恩达Course1-神经网络与深度学习-week3week4作业的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075202

相关文章

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现