电压模式R-2R DAC的工作原理和特性

2024-06-19 12:28

本文主要是介绍电压模式R-2R DAC的工作原理和特性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文将探讨电压模式R-2R DAC结构。

在本文中,我们将探索什么是R-2R DAC以及如何实现它们。

首先,我们将简要回顾一下开尔文分压器DAC。这种结构很简单,但它们需要大量的电阻和开关来实现高分辨率DAC。这个问题的一个解决方案是称为R-2R DAC的DAC结构。这些结构巧妙地利用梯形网络来实现电阻较少的DAC。

什么是数字转换器?

数模转换器(DAC)接收以数字代码表示的数据,并产生等效模拟输出(见下面的图1)。值得一提的是,除了数字输入外,DAC还需要模拟基准电压或电流才能工作。该基准电压源可在DAC芯片内部产生,也可在外部提供。

图1. 图片由 ADI公司.

上述理想传递函数对应于一个三位单极性DAC。请注意,DAC输入和输出都是量化值,传递函数实际上由八个点组成(而不是穿过这八个点的线)。此外,模拟输出(输入代码全为1的输出)比满量程(FS)值低。

串式DAC(开尔文分频器)简介:2的问题n 电阻

产生图1传递函数的基本结构如下图2所示。这种结构称为串式DAC或开尔文分压器,使用八个相等的电阻串联来产生三位DAC的八个不同电压电平。例如,要产生等于 V 的模拟输出裁判/4,我们只需要转动开关SW4 上。

输出缓冲器用于防止电阻串受到DAC输出节点V的任何负载效应代数转换器.

图2

开尔文分频器的一个主要缺点是n位DAC需要2n 电阻器和开关。这就是为什么使用这种方法来构建高分辨率DAC并不容易的原因(尽管可以将开尔文分频器与其他技术结合使用来构建更复杂的DAC)。

然而,有一种有趣的方法,它使用梯形网络来显着减少电阻器的数量。这些结构称为R-2R DAC,将在下一节中讨论。

分析 R-2R DAC 电路

基本的四位R-2R电压模式DAC如图3所示。数字代码应应用于输入 D3...D0,其中 D3 是有效位 (MSb),D0 是有效位 (LSb)。请参考Robert Keim之前的文章以了解更多信息 /有效位/字节和字节序.

如您所见,梯形图中有两种不同的电阻值(R 和 2R)。

图3

R-2R DAC 电阻器

一些观察可以使电路的分析更简单:

  • 在每个R电阻的左侧,我们总是会看到R的等效电阻。如图 4 中的蓝色箭头所示。
  • 考虑到前面的观察结果,我们知道从R电阻的右侧端子看,我们总是会看到一个2R的等效电阻(图4中的红色箭头)。

请注意,为了计算等效电阻,施加到 D3...D0 的电压源对地短路。

图 4

电路操作

现在让我们检查电路操作。假设 D0 连接到 V REF并且其他位为逻辑低电平;我们得到图5中的电路。

图 5

应用戴维宁定理,我们可以对虚线左侧的电路建模,如图 6 所示。

图 6

戴维南等效电压为VREF除以2,戴维南等效电阻等于R。

现在,我们使用这个等效电路,得到图 7 中的电路。

图 7

使用戴维南方程简化 R-2R DAC 电路

如果我们考虑图7中虚线左侧的电路,我们会观察到重复的模式。有两个2R电阻和一个电压源。这部分电路的戴维宁等效值如图8所示。

图8

因此,V裁判 再次降低两倍,等效电阻仍为R。如果我们将此模型连接到电路的其余部分,则先前的模式将再次出现。如图 9 所示。

图9

考虑到我们之前的简化,我们可以很容易地在虚线左侧找到电路的戴维宁等效物。戴维宁电压将为V裁判/8,

如果 D2 连接到 V裁判 其他三位逻辑低电平,我们得到图13中的模型。

图13

应用戴维宁定理,我们得到图14中的电路。

图14

考虑到运算放大器反相输入端的虚地,电流 (V REF /2)/2R 应该流过反馈电阻。因此,我们有:V DAC = -V REF /2。

为了检查 MSB,我们假设 D3 连接到 V REF(逻辑高电平),其他三位接地(逻辑低电平)。在这种情况下,我们获得图 15 中的模型。

图 15

因此,输出电压将为 V DAC = -(V REF /2R)?2R = -V REF。

总而言之,连接输入 D3, D2, D1和 D0 到 V裁判 可分别产生-V的电压步长裁判, -V裁判/2, -V裁判/4 和 -V裁判/8.这些电压阶跃是执行数模转换时所需的基准电压的二进制加权分数。由于电路是线性的,输入的组合将产生相应的输出电压阶跃的相同组合。例如,如果 D0 和 D1 连接到 V裁判 和 D2 和 D3 逻辑低电平,输出将为-V裁判/8 -V裁判/4 = -3V裁判/8.注意反馈电阻,RF,直接影响DAC的增益。

电压模式R-2R DAC的一些重要特性

R-2R梯形网络中的电阻连接永远不会被开关断开(如开尔文分压器)。该设计使得无论对DAC施加何种数字代码,运算放大器的反相端始终具有恒定的等效电阻。换句话说,梯形网络的输出阻抗是恒定的。这使得放大器或单位增益缓冲器的稳定更加容易。

但是,基准电压源观察到梯形图网络的负载阻抗变化。因此,参考发生器应该能够产生适用于宽负载电阻范围的电压。

如果与理想元件值的偏差相对较大,则R-2R DAC的输入至输出响应可以是非单调的。单调DAC响应要么完全不增加,要么完全不减少。例如,开尔文分频器的输入-输出特性是单调的。如果我们增加输入数字代码,输出模拟电压将增加或(在坏的情况下)保持其值;它不会减少。因此,组件不匹配不会导致非单调响应。

R-2R DAC的情况并非如此。采用图4的结构,模拟输出应随着输入代码的增加而减小。但是,假设由于电阻值不匹配,对应于MSB的输出电压阶跃为-3?V裁判/4而不是理想值 -V裁判.如果输入代码从 0111 更改为 1000,则输出将从 -V裁判/2 - V裁判/4 - V裁判/8 = -7?V裁判/8 至 -3?V裁判/4.

因此,如果我们有不匹配,输入代码的增加会导致模拟输出电压的增加,因此输入到输出的响应可以是非单调的!请注意,某些应用需要在闭环系统中使用DAC。在这些情况下,非单调DAC响应可能会改变 负面反馈 到积极的反馈。这就是为什么单调性可能很重要,具体取决于应用。

这篇关于电压模式R-2R DAC的工作原理和特性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075021

相关文章

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2