基于STM32实现TMC5160实现简单转动(SPI)

2024-06-19 10:58

本文主要是介绍基于STM32实现TMC5160实现简单转动(SPI),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在前几天讲了关于TMC5160的简单转动,那是只是独立模式,不需要SPI通信,配置几个引脚和方波就可以了。如果想了解模式三可以看我之前写文章,代码也在里面了
文章链接:https://blog.csdn.net/u011895157/article/details/112390875

这几天一直在研究TMC5160这个芯片,它和2160很像,很多配置都可以通用。因为这款产品网上资料很少,平时都是参考芯片手册,偶尔看看网上一些琐碎的经验,就这样一步步摸索出来。

特点和优势(功能模块)

2.1 StealthChop2
无噪声、高精度斩波算法,用于电机的静止和运动状态下的静音控制。StealthChop2 在 StealthChop 的基础上,加快了电机运动加减速特性,降低了所需的电流最小值。只能用于电机低速模式。
2.2 SpreadCycle
高精度斩波算法,用于高动态电机运动和产生绝对干净的电流波。低噪音、低共振和低振动斩波器。用于高速模式,最好和stealthChop结合使用,但两者不能同时使用。
2.3 DcStep
根据驱动电流和负载,自动调节电机速度,使之最大而不失步。当负载增加,速度会自动降低。
2.4 StallGuard2
反应电机负载。它可用于堵转检测以及在低于让电机堵转的负载下的其它用途,例如负载相关电流调节。
2.5 CoolStep
智能电流控制,根据负载自适应电流,可将能耗降低 75 %。只能工作在SpreadCycle模式下。
2.6 MicroPlyer
细分内插器,用于从全步开始,以较低细分输入获得 256 微步的平滑度。
2.7 保障措施
TRINAMIC电机驱动器还提供了检测和防止短路输出、输出开路、过热和欠压情况的保障措施,以增强安全性及故障恢复处理。

配置过程

1.SPI通信
读操作,地址字节的最高位是0。写操作,地址字节的最高位是1。所以读地址寄存器(如0x21)之前,地址字节必须设置为 0x21。写寄存器0x21字节必须设置为 0x80+0x21 = 0xA1。如上图注意一点,读寄存器的时候返回的值是上次的,如果要读当前寄存器的数据需要发两次读操作。
在这里插入图片描述
①我这边用的是SPI2,记得将SD_MODE=0,SPI_MODE=1,否则无法进入模式一。

GPIO_InitTypeDef GPIO_InitStructure;SPI_InitTypeDef  SPI_InitStructure;RCC_APB2PeriphClockCmd(	RCC_APB2Periph_GPIOB, ENABLE );//PORTB时钟使能 RCC_APB1PeriphClockCmd(	RCC_APB1Periph_SPI2,  ENABLE );//SPI2时钟使能 	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //PB13/14/15复用推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIOBGPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;  //PB13/14/15复用推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIOBSPI_CS=0;SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;  //设置SPI单向或者双向的数据模式:SPI设置为双线双向全双工SPI_InitStructure.SPI_Mode = SPI_Mode_Master;		//设置SPI工作模式:设置为主SPISPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;		//设置SPI的数据大小:SPI发送接收8位帧结构SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;		//串行同步时钟的空闲状态为高电平SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;	//串行同步时钟的第二个跳变沿(上升或下降)数据被采样SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;		//NSS信号由硬件(NSS管脚)还是软件(使用SSI位)管理:内部NSS信号有SSI位控制SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64;		//定义波特率预分频的值:波特率预分频值为256SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;	//指定数据传输从MSB位还是LSB位开始:数据传输从MSB位开始SPI_InitStructure.SPI_CRCPolynomial = 7;	//CRC值计算的多项式SPI_Init(SPI2, &SPI_InitStructure);  //根据SPI_InitStruct中指定的参数初始化外设SPIx寄存器SPI_Cmd(SPI2, ENABLE); //使能SPI外设

②接下来就是配置寄存器了,如果单纯实现它的简单转动,像coolstep,dcstep这些功能是不需要开的。

sendData(TMC5160_CHOPCONF, 	0x000100C3);	//page67,斩波器和驱动配置TOFF=3, HSTRT=4, HEND=1, TBL=2, CHM=0 (spreadcycle)sendData(TMC5160_IHOLD_IRUN, 0x0006100A);		//page49,速度相关控制RsendData(TMC5160_TPOWERDOWN ,0x0000000A);sendData(TMC5160_GCONF, 0x00000004); 	//page39,使能pwm模式sendData(TMC5160_TPWMTHRS ,0x000001F4);sendData(TMC5160_PWMCONF, 	0x0000000A);		//page77,PWM调制模式//	sendData(TMC5160_XTARGET, 0); 				//page54,XTARGET=51200*2(顺时针旋转2圈(1圈:200*256微步))
//	sendData(TMC5160_XACTUAL  , 	0x00000000);	//page53,实际电机位置
//	sendData(TMC5160_VACTUAL  , 	0x00000000);	//page53,斜坡发生器产生的实际电机速度(有符号)
//	sendData(TMC5160_VSTART   , 	5);				//page53,电机启动速度sendData(TMC5160_A1       , 	50000);			//page52,VSTART和V1之间的加速度sendData(TMC5160_V1       , 	50000);			    //page52,第一阶段加速度/减速阶段阈值速度,0:只用AMAX,DMAX	sendData(TMC5160_AMAX     , 	50000);			//page52,V1 和 VMAX 之间的加速度(无符号)sendData(TMC5160_VMAX     , 	112800);sendData(TMC5160_DMAX     , 	50000);			//page52,VMAX和V1之间的减速度(无符号)sendData(TMC5160_D1       , 	50000);			//page53,VSTOP和V1之间的减速度(无符号)sendData(TMC5160_VSTOP    , 	0x0000000A);			//page53,电机停止速度(无符号)//sendData(TMC5160_TZEROWAIT, 	1000);			//page53,可避免过度加速,例如从 VSTOP 到- VSTART。			sendData(TMC5160_RAMPMODE ,0x00000000);

接下来会整理一下stealthchop模式的代码和文字说明,数据手册和代码程序可自行下载,有做的不好的地方还请指正,如果有问题的朋友也可以评论区留言。

TMC5160中文数据手册:https://download.csdn.net/download/u011895157/14141761

TMC5160程序:https://download.csdn.net/download/u011895157/14896055

这篇关于基于STM32实现TMC5160实现简单转动(SPI)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074835

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义