细说MCU输出互补型PWM波形的实现方法

2024-06-19 10:12

本文主要是介绍细说MCU输出互补型PWM波形的实现方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、硬件及工程 

二、建立工程

1、TIM1引脚

2、建立工程

(1)配置GPIO

(2)选择时钟源和Debug模式

(3)配置定时器

(4)配置中断

(5)配置系统时钟

三 、代码修改

1、重定义回调函数

2、使能PWM输出

四、下载和运行 


        互补型的PWM输出就是两路输出是完全互补的,某时刻一路输出高电平,另外一路就输出低电平。这种互补型的PWM输出在电力电子的控制中经常用。比如,对单相H桥高、低压臂上的开关进行控制,因为同一桥臂上的两个开关不能同时导通,所以就需要用这种互补型的PWM。TIM3没有互补型输出。以TIM1为例介绍其互补型PWM输出配置过程。由于TIM1属于高级控制定时器,性能要比作为通用定时器的TIM3高,所以配置参数也较多。 

一、硬件及工程 

        文章依赖的硬件及工程配置参考本文作者的其他文章:细说ARM MCU的串口接收数据的实现过程-CSDN博客 https://wenchm.blog.csdn.net/article/details/139541112

二、建立工程

1、TIM1引脚

        TIM1有四个通道,所以也可以配置四个PWM输出:TIM1_CH1、TIM1_CH2、TIM1_CH3和TIM1_CH4。此外,TIM1还有四个互补型PWM输出:TIM1_CH1N、TIM1_CH2N、TIM1_CH3N、TIM1_CH4N。

        由于引脚复用,这些PWM信号可通过配置从不同的引脚输出。当然,具体输出的引脚也不是任意的,默认情况下,需要从特定的引脚中进行选择。譬如TIM1_CH1这个PWM输出,在STM32G474RE中,可通过PA8/PCO输出,TIM1_CH1N可通过PA7/PA11/PB13/PC13输出。不过,最终只能选择其中的一个引脚。TIM1的四个PWM输出通道对应的引脚如下:

TIM1_CH1——PA8/PC0、 TIM1_CH1N——PA7/PA11/PB13/PC13;
TIM1_CH2——PA9/PC1、 TIM1_CH2N——PA12/PB0/PB14;
TIM1_CH3——PA10/PC2、TIM1_CH3N——PB1/PB9/PB15;
TIM1_CH4——PA11/PC3、TIM1_CH4N——PC5;

        下面以TIM1_CH1和TIM1_CH1N这对互补型PWM输出为例,介绍互补型PWM的配置过程。

2、建立工程

(1)配置GPIO

        配置PC3作为输出(GPIO_output),在TIM1的中断函数中控制PC3的输出状态。配置参数为:初始High,推挽输出,上拉,输出速度High;

(2)选择时钟源和Debug模式

        将高速外部时钟(HSE)设置为Crystal/Ceramic Resonator,使用片外时钟晶体作为HSE的时钟源。最后,在SYS中将Debug设置为Serial Wire。

(3)配置定时器

        在TIM1的模式(Mode)区中,选择Internal Clock,通1(Channel 1)的参数选择PWM Generation CH1 CH1N;然后,将参数置(Parameter Settings)中的预分频因子(Prescaler)和计数器周期(Counter Period)分别设置为0和8499,计数模式(Counter Mode)设置为升模式(Up),并且使能自动重载。

        预分频因子设置为0的意思是没有对定时器时钟分频,所以计数器的两次计数之间的时间间隔就是系统时钟频率的倒数。假如时钟频率为170 MHz,则两次计数的时间间隔(1/170)μs。

        将计数周期设置为8499,也就是计数到8499后重新从0开始计。在时钟频率170 MHz之下,计数器的周期为(1/170×10⁶)×(8499+1)≈50(μs),对应的频率为20 kHz。

        由于TIM1的性能比TIM3高,所以配置参数也多了不少。 在PWM Generation Channel 1 and 1N的参数配置中,模式(Mode)选择PWM mode 1,脉冲数(Pulse)设置为2125,通道极性(CH Polarity)设置为High。其他参数保持默认值。这里脉冲数Pulse决定着占空比,此处设2125,而计数器周期为8500,所以占空比刚好为25%。

        设置死区时间(Dead Time)的参数,这个参数在默认时是0,先把改成100。

(4)配置中断

        使能TIM1的update中断(与TIM16全局中断共用)。

       优先级组(Priority Group)还是选择4 bits for preemption priority O bits for subpriority。还可以看到,TIM1 update interrupt出现在中断表中,并且已使能,将它的抢占式优先级设为1,响应优先级设为0。

(5)配置系统时钟

        将系统时钟(SYSCLK)频率配置为170 MHz,与前面例子中的时钟配置相同。配置完成后,保存文件,并启动代码自动生成。

三 、代码修改

        由于配置了TIM1中断,希望在中断发生后通过PC3引脚送出一个脉冲信号。为此,需要重定义TIM1中断的回调函数HAL_TIM_PeriodElapsedCallback()。

1、重定义回调函数

        将回调函数放到main.c后面的注释对中,实现代码如下:

/* USER CODE BEGIN 4 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{HAL_GPIO_TogglePin(GPIOC,GPIO_PIN_3);
}
/* USER CODE END 4 */

        随后,还需要在主程序中的初始化代码部分调用库函数,开启定时器中断、使能PWM。

        启动定时器中断还需要用库函数HAL_TIM_Base_Start_IT()。调用该函数的语句如下:其中,htim1为TIM1的句柄。

HAL_TIM_Base_Start_IT(&htim1);

2、使能PWM输出

        使用了库函数HAL_TIM_PWM_Start()使能PWM输出。启动TIM1的PWM通道1的输出:

HAL_TIM_PW_Start(&htim1,TIM_CHANNEL_1);

        还需要输出一个与TIM1_CH1互补的TIM1_CH1N。使能互补型的TIM1_CH1N是需要另外一个库函数的:

HAL_TIMEx_PWMN_Start(&htim1,TIM_CHANNEL_1);

        将上述三个初始化用库函数的调用放到main函数中,位于while(1)之前、TIM1初始化函数MX_TIM1_Init()之后的注释对中:

/* USER CODE BEGIN 2 */HAL_TIM_Base_Start_IT(&htim1);HAL_TIM_PWM_Start(&htim1,TIM_CHANNEL_1);HAL_TIMEx_PWMN_Start(&htim1,TIM_CHANNEL_1);
/* USER CODE END 2 */

        编译工程并下载到硬件中,将程序运行起来。

四、下载和运行 

        通过示波器查看PC3、PA7和PA8的输出波形。

        通过示波器查看PC3、PA7和PA8的输出波形

        第1通道接PA8引脚的输出,对应 TTM1_ CH 1;

        第2通道接PA7引脚的输出,对应 TIM1_ CH 1N;

        两路 PWM波形频率都是20kH么并且互补。 PC3输出的信号周期为10 kHz,刚好是PWM波形频率的一半。因为在TIM1中断的回调函数中控制PC3用的是HAL_GPIO_TogglePin()函数,每次中断时只是让PC3的状态翻转,所以频率为定时器中断频率的一半。

 

这篇关于细说MCU输出互补型PWM波形的实现方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074741

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima