中国剩余定理——AcWing 204. 表达整数的奇怪方式

2024-06-19 06:36

本文主要是介绍中国剩余定理——AcWing 204. 表达整数的奇怪方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中国剩余定理

定义

中国剩余定理最早出自我国古代的《孙子算经》,是数论中的一个重要定理。它描述了这样一种情况:在模运算下,对于一组线性同余方程组,存在唯一解的条件和求解方法。

运用情况

常用于在一些涉及到按不同模的余数条件下求解问题。比如在密码学、计算数论、计算机科学等领域中,当需要处理多个模条件相关的计算时,常常会用到中国剩余定理。

注意事项

  • 要求各个模之间互质,否则定理不直接适用,可能需要进行一些转化处理。
  • 在计算过程中要保证计算的准确性,尤其是涉及到较大数的运算时。

解题思路

AcWing 204. 表达整数的奇怪方式   

题目描述

AcWing 204. 表达整数的奇怪方式 - AcWing

运行代码

#include <iostream>
#define int long long
using namespace std;
int n;
int exgcd(int a, int b, int &x, int  &y)
{if(!b){x = 1, y = 0;return a;}int d = exgcd(b, a % b, y, x);y -= a / b * x;return d;
}
signed main()
{bool st = true;cin >> n;int a1, m1;cin >> a1 >> m1;for(int i = 2; i <= n; i ++ ){int a2, m2, k01, k02, d;cin >> a2 >> m2;d = exgcd(a1, a2, k01, k02);if((m2 - m1) % d) {st = false;break;}k01 = k01 * (m2 - m1) / d;k01 = (k01 % (a2 / d) + (a2 / d)) % (a2 / d);m1 += a1 * k01;a1 = a1 / d * a2;}if(st) cout << (m1 % a1 + a1) % a1 << endl;else cout << -1 << endl;return 0;
} 

代码思路

  1. 类型定义与变量初始化

    • 使用 #define int long long 将整型变量默认定义为长整型,以处理大数。
    • 定义全局变量 n 表示同余方程的数量。
  2. 扩展欧几里得算法(exgcd): 实现了扩展欧几里得算法,用于求解形如 ax + by = gcd(a, b)ax+by=gcd(a,b) 的方程。返回值 d 是 aa 和 bb 的最大公约数(GCD),同时通过引用参数 xy 返回系数。这个函数是解决CRT的关键,用于寻找模数之间的关系。

  3. 主函数(main)

    • 首先读入同余方程的数量 n
    • 初始化第一个方程的系数 a1 和模数 m1
    • 对于每个后续的方程(从第二个到第 n 个),执行以下操作:
      • 读取当前方程的系数 a2 和模数 m2
      • 使用 exgcd 函数计算 a1 和 a2 的最大公约数 d,以及对应的系数 k01k02
      • 检查是否存在解:如果 (m2 - m1)(m2−m1) 不能被 d 整除,则说明无解,标记 st 为 false 并跳出循环。
      • 如果有解,根据中国剩余定理调整 m1 和 a1,使得它们分别表示合并后的同余方程的临时解和新模数。
    • 最后,根据 st 的值输出结果:如果为 true,则输出满足所有同余条件的最小非负整数解;否则,输出 -1 表示无解。

改进思路

  1. 使用更明确的变量名:虽然简短的变量名让代码紧凑,但更具有描述性的名称可以提高代码的可读性。例如,可以将 a1, a2, m1, m2 等变量名改为 current_coefficient, next_coefficient, current_modulus, next_modulus 等。

  2. 避免全局变量:全局变量 n 可能导致代码的维护和理解难度增加,尤其是在大型项目中。可以考虑将其作为函数参数传递。

  3. 优化解的计算和输出

    • 直接计算最终解而不仅仅是累积操作。在循环结束后,可以计算最终的 x(即满足所有同余方程的解)并直接取模,避免最后对 a1 进行额外的模运算。
    • 输出解时,使用 % 运算符可能两次取模,实际上 (m1 % a1 + a1) % a1 可以简化为 (m1 % a1),因为当 m1 < 0 时,(m1 + a1) % a1 已经保证结果非负。
  4. 增加错误处理和注释:对于输入验证(如检查模数是否两两互质、是否为正整数等)添加更多的错误处理逻辑,并在关键步骤添加注释,帮助读者理解算法逻辑。

  5. 模块化设计:将中国剩余定理的求解过程封装成一个独立的函数,而不是全部放在 main 函数中,这样可以提高代码的复用性和可测试性。

  6. 考虑大数运算库:如果要处理非常大的数字,可以考虑使用专门的大数运算库(如 GMP 库),这会比直接使用 C++ 内置数据类型更高效且支持更大的数值范围。

  7. 优化扩展欧几里得算法的实现:虽然现有实现是标准的,但在某些特定情况下,可以通过一些小技巧进一步优化,比如利用幂次计算减少递归深度,或是迭代法替代递归以节省栈空间。

这篇关于中国剩余定理——AcWing 204. 表达整数的奇怪方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074276

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Oracle数据库定时备份脚本方式(Linux)

《Oracle数据库定时备份脚本方式(Linux)》文章介绍Oracle数据库自动备份方案,包含主机备份传输与备机解压导入流程,强调需提前全量删除原库数据避免报错,并需配置无密传输、定时任务及验证脚本... 目录说明主机脚本备机上自动导库脚本整个自动备份oracle数据库的过程(建议全程用root用户)总结

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

linux批量替换文件内容的实现方式

《linux批量替换文件内容的实现方式》本文总结了Linux中批量替换文件内容的几种方法,包括使用sed替换文件夹内所有文件、单个文件内容及逐行字符串,强调使用反引号和绝对路径,并分享个人经验供参考... 目录一、linux批量替换文件内容 二、替换文件内所有匹配的字符串 三、替换每一行中全部str1为st

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,