GLMBlock中的计算过程拆解

2024-06-19 06:36
文章标签 计算 过程 拆解 glmblock

本文主要是介绍GLMBlock中的计算过程拆解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面我将详细介绍代码中每一个部分,并用LaTeX公式来表示各个步骤的数学运算。

类 GLMBlock

该类继承自 torch.nn.Module,表示一个单一的Transformer层。Transformer层接收尺寸为 [s, b, h] 的输入,并返回相同尺寸的输出。

class GLMBlock(torch.nn.Module):"""A single transformer layer.Transformer layer takes input with size [s, b, h] and returns anoutput of the same size."""

初始化方法

初始化方法定义了该层的各个组件,包括输入层的层归一化、自注意力机制、注意力输出的层归一化和MLP层。

def __init__(self, config: ChatGLMConfig, layer_number, device=None):super(GLMBlock, self).__init__()self.layer_number = layer_numberself.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernormself.fp32_residual_connection = config.fp32_residual_connectionLayerNormFunc = RMSNorm if config.rmsnorm else LayerNormself.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,dtype=config.torch_dtype)self.self_attention = SelfAttention(config, layer_number, device=device)self.hidden_dropout = config.hidden_dropoutself.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,dtype=config.torch_dtype)self.mlp = MLP(config, device=device)

前向传播方法

前向传播方法定义了数据流经各个组件的方式。

def forward(self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True):# hidden_states: [s, b, h]
1. 输入层归一化

对输入进行层归一化。

layernorm_output = LayerNorm ( hidden_states ) \text{layernorm\_output} = \text{LayerNorm}(\text{hidden\_states}) layernorm_output=LayerNorm(hidden_states)

layernorm_output = self.input_layernorm(hidden_states)
2. 自注意力机制

将归一化后的输出传递给自注意力层,并获取注意力输出和更新后的缓存。

attention_output , kv_cache = SelfAttention ( layernorm_output , attention_mask , rotary_pos_emb , kv_cache = kv_cache , use_cache = use_cache ) \text{attention\_output}, \text{kv\_cache} = \text{SelfAttention}(\text{layernorm\_output}, \text{attention\_mask}, \text{rotary\_pos\_emb}, \text{kv\_cache}=\text{kv\_cache}, \text{use\_cache}=\text{use\_cache}) attention_output,kv_cache=SelfAttention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache)

attention_output, kv_cache = self.self_attention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache
)
3. 残差连接

根据配置决定残差连接的位置。

residual = { layernorm_output if apply_residual_connection_post_layernorm hidden_states otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{hidden\_states} & \text{otherwise} \end{cases} residual={layernorm_outputhidden_statesif apply_residual_connection_post_layernormotherwise

if self.apply_residual_connection_post_layernorm:residual = layernorm_output
else:residual = hidden_states
4. 添加Dropout并进行第二次层归一化

layernorm_input = Dropout ( attention_output , p = self.hidden_dropout ) \text{layernorm\_input} = \text{Dropout}(\text{attention\_output}, p=\text{self.hidden\_dropout}) layernorm_input=Dropout(attention_output,p=self.hidden_dropout)
layernorm_input = residual + layernorm_input \text{layernorm\_input} = \text{residual} + \text{layernorm\_input} layernorm_input=residual+layernorm_input
layernorm_output = LayerNorm ( layernorm_input ) \text{layernorm\_output} = \text{LayerNorm}(\text{layernorm\_input}) layernorm_output=LayerNorm(layernorm_input)

layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
layernorm_input = residual + layernorm_inputlayernorm_output = self.post_attention_layernorm(layernorm_input)
5. MLP层

mlp_output = MLP ( layernorm_output ) \text{mlp\_output} = \text{MLP}(\text{layernorm\_output}) mlp_output=MLP(layernorm_output)

mlp_output = self.mlp(layernorm_output)
6. 第二次残差连接和输出Dropout

residual = { layernorm_output if apply_residual_connection_post_layernorm layernorm_input otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{layernorm\_input} & \text{otherwise} \end{cases} residual={layernorm_outputlayernorm_inputif apply_residual_connection_post_layernormotherwise
output = Dropout ( mlp_output , p = self.hidden_dropout ) \text{output} = \text{Dropout}(\text{mlp\_output}, p=\text{self.hidden\_dropout}) output=Dropout(mlp_output,p=self.hidden_dropout)
output = residual + output \text{output} = \text{residual} + \text{output} output=residual+output

if self.apply_residual_connection_post_layernorm:residual = layernorm_output
else:residual = layernorm_inputoutput = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
output = residual + output
返回输出和缓存
return output, kv_cache

总结

通过这种方式,GLMBlock类实现了一个Transformer层,其中包括层归一化、自注意力机制、残差连接、Dropout和MLP层。各个步骤通过LaTeX公式表示如下:

  1. 输入层归一化:
    layernorm_output = LayerNorm ( hidden_states ) \text{layernorm\_output} = \text{LayerNorm}(\text{hidden\_states}) layernorm_output=LayerNorm(hidden_states)

  2. 自注意力机制:
    attention_output , kv_cache = SelfAttention ( layernorm_output , attention_mask , rotary_pos_emb , kv_cache = kv_cache , use_cache = use_cache ) \text{attention\_output}, \text{kv\_cache} = \text{SelfAttention}(\text{layernorm\_output}, \text{attention\_mask}, \text{rotary\_pos\_emb}, \text{kv\_cache}=\text{kv\_cache}, \text{use\_cache}=\text{use\_cache}) attention_output,kv_cache=SelfAttention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache)

  3. 残差连接:
    residual = { layernorm_output if apply_residual_connection_post_layernorm hidden_states otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{hidden\_states} & \text{otherwise} \end{cases} residual={layernorm_outputhidden_statesif apply_residual_connection_post_layernormotherwise

  4. 添加Dropout并进行第二次层归一化:
    layernorm_input = Dropout ( attention_output , p = self.hidden_dropout ) \text{layernorm\_input} = \text{Dropout}(\text{attention\_output}, p=\text{self.hidden\_dropout}) layernorm_input=Dropout(attention_output,p=self.hidden_dropout)
    layernorm_input = residual + layernorm_input \text{layernorm\_input} = \text{residual} + \text{layernorm\_input} layernorm_input=residual+layernorm_input
    layernorm_output = LayerNorm ( layernorm_input ) \text{layernorm\_output} = \text{LayerNorm}(\text{layernorm\_input}) layernorm_output=LayerNorm(layernorm_input)

  5. MLP层:
    mlp_output = MLP ( layernorm_output ) \text{mlp\_output} = \text{MLP}(\text{layernorm\_output}) mlp_output=MLP(layernorm_output)

  6. 第二次残差连接和输出Dropout:
    residual = { layernorm_output if apply_residual_connection_post_layernorm layernorm_input otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{layernorm\_input} & \text{otherwise} \end{cases} residual={layernorm_outputlayernorm_inputif apply_residual_connection_post_layernormotherwise
    output = Dropout ( mlp_output , p = self.hidden_dropout ) \text{output} = \text{Dropout}(\text{mlp\_output}, p=\text{self.hidden\_dropout}) output=Dropout(mlp_output,p=self.hidden_dropout)
    output = residual + output \text{output} = \text{residual} + \text{output} output=residual+output

这篇关于GLMBlock中的计算过程拆解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074272

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller