GLMBlock中的计算过程拆解

2024-06-19 06:36
文章标签 计算 过程 拆解 glmblock

本文主要是介绍GLMBlock中的计算过程拆解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面我将详细介绍代码中每一个部分,并用LaTeX公式来表示各个步骤的数学运算。

类 GLMBlock

该类继承自 torch.nn.Module,表示一个单一的Transformer层。Transformer层接收尺寸为 [s, b, h] 的输入,并返回相同尺寸的输出。

class GLMBlock(torch.nn.Module):"""A single transformer layer.Transformer layer takes input with size [s, b, h] and returns anoutput of the same size."""

初始化方法

初始化方法定义了该层的各个组件,包括输入层的层归一化、自注意力机制、注意力输出的层归一化和MLP层。

def __init__(self, config: ChatGLMConfig, layer_number, device=None):super(GLMBlock, self).__init__()self.layer_number = layer_numberself.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernormself.fp32_residual_connection = config.fp32_residual_connectionLayerNormFunc = RMSNorm if config.rmsnorm else LayerNormself.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,dtype=config.torch_dtype)self.self_attention = SelfAttention(config, layer_number, device=device)self.hidden_dropout = config.hidden_dropoutself.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,dtype=config.torch_dtype)self.mlp = MLP(config, device=device)

前向传播方法

前向传播方法定义了数据流经各个组件的方式。

def forward(self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True):# hidden_states: [s, b, h]
1. 输入层归一化

对输入进行层归一化。

layernorm_output = LayerNorm ( hidden_states ) \text{layernorm\_output} = \text{LayerNorm}(\text{hidden\_states}) layernorm_output=LayerNorm(hidden_states)

layernorm_output = self.input_layernorm(hidden_states)
2. 自注意力机制

将归一化后的输出传递给自注意力层,并获取注意力输出和更新后的缓存。

attention_output , kv_cache = SelfAttention ( layernorm_output , attention_mask , rotary_pos_emb , kv_cache = kv_cache , use_cache = use_cache ) \text{attention\_output}, \text{kv\_cache} = \text{SelfAttention}(\text{layernorm\_output}, \text{attention\_mask}, \text{rotary\_pos\_emb}, \text{kv\_cache}=\text{kv\_cache}, \text{use\_cache}=\text{use\_cache}) attention_output,kv_cache=SelfAttention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache)

attention_output, kv_cache = self.self_attention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache
)
3. 残差连接

根据配置决定残差连接的位置。

residual = { layernorm_output if apply_residual_connection_post_layernorm hidden_states otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{hidden\_states} & \text{otherwise} \end{cases} residual={layernorm_outputhidden_statesif apply_residual_connection_post_layernormotherwise

if self.apply_residual_connection_post_layernorm:residual = layernorm_output
else:residual = hidden_states
4. 添加Dropout并进行第二次层归一化

layernorm_input = Dropout ( attention_output , p = self.hidden_dropout ) \text{layernorm\_input} = \text{Dropout}(\text{attention\_output}, p=\text{self.hidden\_dropout}) layernorm_input=Dropout(attention_output,p=self.hidden_dropout)
layernorm_input = residual + layernorm_input \text{layernorm\_input} = \text{residual} + \text{layernorm\_input} layernorm_input=residual+layernorm_input
layernorm_output = LayerNorm ( layernorm_input ) \text{layernorm\_output} = \text{LayerNorm}(\text{layernorm\_input}) layernorm_output=LayerNorm(layernorm_input)

layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
layernorm_input = residual + layernorm_inputlayernorm_output = self.post_attention_layernorm(layernorm_input)
5. MLP层

mlp_output = MLP ( layernorm_output ) \text{mlp\_output} = \text{MLP}(\text{layernorm\_output}) mlp_output=MLP(layernorm_output)

mlp_output = self.mlp(layernorm_output)
6. 第二次残差连接和输出Dropout

residual = { layernorm_output if apply_residual_connection_post_layernorm layernorm_input otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{layernorm\_input} & \text{otherwise} \end{cases} residual={layernorm_outputlayernorm_inputif apply_residual_connection_post_layernormotherwise
output = Dropout ( mlp_output , p = self.hidden_dropout ) \text{output} = \text{Dropout}(\text{mlp\_output}, p=\text{self.hidden\_dropout}) output=Dropout(mlp_output,p=self.hidden_dropout)
output = residual + output \text{output} = \text{residual} + \text{output} output=residual+output

if self.apply_residual_connection_post_layernorm:residual = layernorm_output
else:residual = layernorm_inputoutput = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
output = residual + output
返回输出和缓存
return output, kv_cache

总结

通过这种方式,GLMBlock类实现了一个Transformer层,其中包括层归一化、自注意力机制、残差连接、Dropout和MLP层。各个步骤通过LaTeX公式表示如下:

  1. 输入层归一化:
    layernorm_output = LayerNorm ( hidden_states ) \text{layernorm\_output} = \text{LayerNorm}(\text{hidden\_states}) layernorm_output=LayerNorm(hidden_states)

  2. 自注意力机制:
    attention_output , kv_cache = SelfAttention ( layernorm_output , attention_mask , rotary_pos_emb , kv_cache = kv_cache , use_cache = use_cache ) \text{attention\_output}, \text{kv\_cache} = \text{SelfAttention}(\text{layernorm\_output}, \text{attention\_mask}, \text{rotary\_pos\_emb}, \text{kv\_cache}=\text{kv\_cache}, \text{use\_cache}=\text{use\_cache}) attention_output,kv_cache=SelfAttention(layernorm_output,attention_mask,rotary_pos_emb,kv_cache=kv_cache,use_cache=use_cache)

  3. 残差连接:
    residual = { layernorm_output if apply_residual_connection_post_layernorm hidden_states otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{hidden\_states} & \text{otherwise} \end{cases} residual={layernorm_outputhidden_statesif apply_residual_connection_post_layernormotherwise

  4. 添加Dropout并进行第二次层归一化:
    layernorm_input = Dropout ( attention_output , p = self.hidden_dropout ) \text{layernorm\_input} = \text{Dropout}(\text{attention\_output}, p=\text{self.hidden\_dropout}) layernorm_input=Dropout(attention_output,p=self.hidden_dropout)
    layernorm_input = residual + layernorm_input \text{layernorm\_input} = \text{residual} + \text{layernorm\_input} layernorm_input=residual+layernorm_input
    layernorm_output = LayerNorm ( layernorm_input ) \text{layernorm\_output} = \text{LayerNorm}(\text{layernorm\_input}) layernorm_output=LayerNorm(layernorm_input)

  5. MLP层:
    mlp_output = MLP ( layernorm_output ) \text{mlp\_output} = \text{MLP}(\text{layernorm\_output}) mlp_output=MLP(layernorm_output)

  6. 第二次残差连接和输出Dropout:
    residual = { layernorm_output if apply_residual_connection_post_layernorm layernorm_input otherwise \text{residual} = \begin{cases} \text{layernorm\_output} & \text{if apply\_residual\_connection\_post\_layernorm} \\ \text{layernorm\_input} & \text{otherwise} \end{cases} residual={layernorm_outputlayernorm_inputif apply_residual_connection_post_layernormotherwise
    output = Dropout ( mlp_output , p = self.hidden_dropout ) \text{output} = \text{Dropout}(\text{mlp\_output}, p=\text{self.hidden\_dropout}) output=Dropout(mlp_output,p=self.hidden_dropout)
    output = residual + output \text{output} = \text{residual} + \text{output} output=residual+output

这篇关于GLMBlock中的计算过程拆解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074272

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

升级至三频BE12000! 华硕ROG魔盒Pro路由器首发拆解评测

《升级至三频BE12000!华硕ROG魔盒Pro路由器首发拆解评测》华硕前两天推出新一代电竞无线路由器——ROG魔盒Pro(StrixGR7Pro),该产品在无线规格、硬件配置及功能设计上实现全... 作为路由器行业的T1梯队厂商,华硕近期发布了新旗舰华硕ROG魔盒Pro,除了保留DIY属性以外,高达120

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap