Apache Flink详解:流处理与批处理的强大框架

2024-06-19 06:04

本文主要是介绍Apache Flink详解:流处理与批处理的强大框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apache Flink详解:流处理与批处理的强大框架

CSDN开发云
Apache Flink是一个开源的流处理框架,旨在处理大规模数据流。Flink能够处理实时流数据和批处理数据,具有高吞吐量、低延迟、容错等特性。以下是对Flink的详细介绍:

核心概念

流与批处理:

  • 流处理 (Stream Processing): 持续不断地处理实时生成的数据流。
  • 批处理 (Batch Processing): 处理已经收集好的静态数据集。

DataStream API:

  • 用于处理无界和有界的数据流。
  • 支持各种转换操作,如map、filter、keyBy、window、reduce等。

DataSet API:

  • 用于批处理任务,已在Flink 1.12中被标记为过时,推荐使用DataStream API来统一处理流和批任务。

State和时间处理:

  • Flink的状态机制允许在流处理过程中存储和访问状态,支持有状态计算。
  • 时间处理包括事件时间 (Event Time)、处理时间 (Processing Time) 和摄入时间 (Ingestion Time),可用于窗口操作等时间相关的计算。

核心组件

JobManager:

  • 负责协调和调度Flink任务的执行。
  • 管理任务的生命周期和故障恢复。

TaskManager:

  • 负责执行实际的数据流处理任务。
  • 每个TaskManager包含多个slots,用于执行不同的任务。

Checkpointing:

  • Flink支持一致性检查点,用于故障恢复。
  • Checkpoint机制将应用状态持久化到外部存储系统,如HDFS、S3等。

Windows:

  • Flink支持基于时间的窗口操作,用于对数据流进行分片处理。
  • 常见的窗口类型包括滚动窗口 (Tumbling Windows)、滑动窗口 (Sliding Windows) 和会话窗口 (Session Windows)。

部署模式

Standalone:

  • Flink可以以独立模式部署,适用于简单的开发和测试环境。

集群模式:

  • 支持在各种集群管理系统上运行,如YARN、Kubernetes、Mesos等。

云部署:

  • Flink可以部署在AWS、Google Cloud等云平台上,利用其弹性扩展和管理功能。

应用场景

实时数据分析:

  • 实时监控、实时推荐系统、实时风控等需要低延迟处理的应用。

ETL(Extract, Transform, Load):

  • 数据抽取、转换和加载,特别是需要实时处理的场景。

机器学习:

  • 实时特征工程和模型训练。

事件驱动应用:

  • 复杂事件处理 (CEP),检测特定模式或事件序列。

优势与特点

高吞吐量、低延迟:

  • 通过高效的数据处理引擎,实现高吞吐量和低延迟。

容错和一致性:

  • 通过Checkpoint机制,保证数据处理的一致性和容错性。

灵活的时间处理:

  • 强大的时间处理功能,支持多种时间语义和窗口操作。

动态扩展:

  • 支持动态扩展,可以根据负载变化调整计算资源。

示例代码

在pom.xml中添加Flink相关依赖:

<dependencies><!-- Spring Boot dependencies --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId></dependency><!-- Apache Flink dependencies --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.12</artifactId><version>1.14.0</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.12</artifactId><version>1.14.0</version></dependency>
</dependencies>

下面是一个简单的Flink流处理应用,读取数据源,进行简单的转换和输出:

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;public class WordCount {public static void main(String[] args) throws Exception {// 设置执行环境final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 从socket读取数据DataStream<String> text = env.socketTextStream("localhost", 9999);// 解析数据,按单词计数DataStream<Tuple2<String, Integer>> counts = text.flatMap(new Tokenizer()).keyBy(value -> value.f0).sum(1);// 打印结果counts.print();// 执行任务env.execute("Streaming WordCount");}// 用于解析数据的函数public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {@Overridepublic void flatMap(String value, Collector<Tuple2<String, Integer>> out) {for (String word : value.split("\\s")) {if (word.length() > 0) {out.collect(new Tuple2<>(word, 1));}}}}
}

总结

Apache Flink是一种功能强大的流处理框架,适用于各种实时数据处理场景。其高性能、容错能力和灵活的时间处理特性,使其成为大数据处理的重要工具。通过对流和批处理的一体化支持,Flink为开发者提供了统一的数据处理平台。

这篇关于Apache Flink详解:流处理与批处理的强大框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1074206

相关文章

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数