DetectMultiScale函数中合并检测框的策略

2024-06-19 03:58

本文主要是介绍DetectMultiScale函数中合并检测框的策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么要合并?

因为我们目标检测的目的是:

mark

但是实际上只通过分类器检测出来是这样的结果:

mark
所以需要进行检测框的合并。

在DetectMultiScale函数中,调用groupRectangle函数来进行检测框的合并,合并之前,首先需要解决怎样分组的问题,即解决使用什么样的原则把不同的检测框归为一组,该函数中的解决方案是计算了不同检测框之间的相似度。

相似度计算方法

该函数中使用SimilarRects来计算相似度,其方法为:

inline bool operator()(const Rect& r1, const Rect& r2) const{// delta为最小长宽的eps倍double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;// 如果矩形的四个顶点的位置差别都小于delta,则表示相似的矩形return std::abs(r1.x - r2.x) <= delta &&std::abs(r1.y - r2.y) <= delta &&std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;}

合并流程

定义好窗口相似性函数后,就可以利用并查集合并窗口函数了,大致过程如下:

  1. 调用Partiton方法进行窗口分组。在该方法中,首先建立Rect对象的并查集初始结构,然后遍历整个并查集,用SimilarRects::operator()判断每2个窗口相似性,若相似则将这2个窗口放入一个组;
  2. 运行完步骤1后会出现几个相互间不相似的窗口的组,当组中的窗口数量小于阈值minNeighbors时,丢弃该组(认为这是零散分布的误检);
  3. 之后剩下若干组由大量重叠窗口组成的比较大的组,分别求每个组中的所有窗口位置的平均值作为最终检测结果,每个组中通过stage的最大值以及最大的权重作为最终合并后的检测框的stage和权重

Partiton定义

Function: Splits an element set into equivalency classes.

C++:

 template<typename _Tp, class _EqPredicate> int partition(const vector<_Tp>& vec, vector<int>& labels, _EqPredicate predicate=_EqPredicate())

Parameters:

  • vec – Set of elements stored as a vector.
  • labels – Output vector of labels. It contains as many elements as vec. Each label labels[i] is a 0-based cluster index of vec[i] .
  • predicate – Equivalence predicate (pointer to a boolean function of two arguments or an instance of the class that has the method bool operator()(const _Tp& a, const _Tp& b) ). The predicate returns true when the elements are certainly in the same class, and returns false if they may or may not be in the same class.

Description: The generic function partition implements an O(N^2) algorithm for splitting a set of N elements into one or more equivalency classes, as described in http://en.wikipedia.org/wiki/Disjoint-set_data_structure . The function returns the number of equivalency classes.

完整的groupRectangles函数代码解析:

//rectList:带组合的窗口,即作为输入又作为输出
//weights:通过分类器的stage数,一般不小于stage总数-4,也就是之前的rejectLevels
//levelWeights:通过上述stage数的输出权重,也就是通过的stage数的所有node之和,里面即包含left_val又right_val,同一个node只包含其中的一个
//groupThreshold:组合阈值,当没有输入rejectLevels的时候,当待合并的窗口数大于该阈值的时候才可能进行合并,否则放弃;当输入rejectLevels的时候,当前组合下通过检测的stage最大值数大于该阈值的时候才可能进行合并,否则放弃
//eps:待合并的两个窗口的相关性,从矩形所在位置的像素差值考虑,当eps为0的时候不进行合并,直接返回
void groupRectangles(vector<Rect>& rectList, int groupThreshold, double eps, vector<int>* weights, vector<double>* levelWeights)
{if( groupThreshold <= 0 || rectList.empty() ) //判断minNeibors<=0{if( weights )   //如果要输出rejrejectLevels,则令所有的level都为1{size_t i, sz = rectList.size();weights->resize(sz);for( i = 0; i < sz; i++ )(*weights)[i] = 1;}return;}vector<int> labels;//调用partition函数对rectList中的矩形进行分类,nclasses表示组合类别数,有个参数eps是相关性,labels表示每个rect属于哪个类别的int nclasses = partition(rectList, labels, SimilarRects(eps));//存放每一类最后得到的矩形框的vector<Rect> rrects(nclasses);//记录同一类中检测框的个数vector<int> rweights(nclasses, 0);//保存每个类中stage的最大值以及最大权重vector<int> rejectLevels(nclasses, 0);vector<double> rejectWeights(nclasses, DBL_MIN);//DBL_MIN:min positive valueint i, j, nlabels = (int)labels.size();//组合分到同一类别的矩形并保存当前类别下通过stage的最大值以及最大的权重for( i = 0; i < nlabels; i++ ){int cls = labels[i];rrects[cls].x += rectList[i].x;rrects[cls].y += rectList[i].y;rrects[cls].width += rectList[i].width;rrects[cls].height += rectList[i].height;rweights[cls]++;}if ( levelWeights && weights && !weights->empty() && !levelWeights->empty() ){for( i = 0; i < nlabels; i++ ){int cls = labels[i];if( (*weights)[i] > rejectLevels[cls] ) //得到最大stage{rejectLevels[cls] = (*weights)[i];rejectWeights[cls] = (*levelWeights)[i];}else if( ( (*weights)[i] == rejectLevels[cls] ) && ( (*levelWeights)[i] > rejectWeights[cls] ) )rejectWeights[cls] = (*levelWeights)[i]; //得到最大权重}}//组合矩形的方法是去同一类矩形的平均值for( i = 0; i < nclasses; i++ ){Rect r = rrects[i];float s = 1.f/rweights[i];rrects[i] = Rect(saturate_cast<int>(r.x*s),saturate_cast<int>(r.y*s),saturate_cast<int>(r.width*s),saturate_cast<int>(r.height*s));}rectList.clear();if( weights )weights->clear();if( levelWeights )levelWeights->clear();//根据上述合并规则,以及是否存在包含关系输出合并后的矩形for( i = 0; i < nclasses; i++ ){Rect r1 = rrects[i];int n1 = levelWeights ? rejectLevels[i] : rweights[i];double w1 = rejectWeights[i];//这里就是minNeibor起作用的地方if( n1 <= groupThreshold )continue;// filter out small rectangles inside large rectanglesfor( j = 0; j < nclasses; j++ ){int n2 = rweights[j];if( j == i || n2 <= groupThreshold )continue;Rect r2 = rrects[j];//这里好像是用来防止数据溢出的,但是不懂为什么要这么操作int dx = saturate_cast<int>( r2.width * eps );int dy = saturate_cast<int>( r2.height * eps );//前四个判断r1和r2是不是包含关系if( i != j &&r1.x >= r2.x - dx &&r1.y >= r2.y - dy &&r1.x + r1.width <= r2.x + r2.width + dx &&r1.y + r1.height <= r2.y + r2.height + dy &&(n2 > std::max(3, n1) || n1 < 3) )break;}//不存在包含关系的时候,输出合并后的框if( j == nclasses ){rectList.push_back(r1);if( weights )weights->push_back(n1);if( levelWeights )levelWeights->push_back(w1);}}
}

后续工作

通过以上合并流程后并不能完全达到预期的效果,很有可能会出现以下效果:

mark

所以对合并代码做了针对性的修改,在一定程度上减少了上述情况。

参考资料

  1. OpenCV中的Haar+Adaboost(四):利用并查集合并检测结果窗口
  2. 并查集详解

这篇关于DetectMultiScale函数中合并检测框的策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073942

相关文章

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片