技术点梳理0618

2024-06-19 00:44
文章标签 技术 梳理 0618

本文主要是介绍技术点梳理0618,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ann建库,分布式建库,性能优化,precision recall参数优化

hnsw,图索引

1. build

a)确定层:类似跳表思路建立多层,对每一个插入的节点,random层号l,从图的起始点search_layer(ef=1)到l+1层(自顶向下)的最近邻近点

b)确定边:遍历l到0层(继续向底部搜索),search_layer(ef)找到最邻近ef个点,选择最邻近的M个点,建立双向边

c)裁剪-防止稠密:遍历M个点如果节点的邻节点超过Mmax仅保留最近的边

2. search(q)

a) 快速游走到比较近的节点:自顶向下搜索到最底层search_layer(ef=1)

b) 贪心ann:建立两个集合,候选集队列C、最近邻队列W(队列长度为ef),从C里拿出距离q最近的节点c,如果可以更新W(距离小于W的对尾)就遍历c的邻节点来更新W

分布式建库(全增量):流批一体化,全量、批次增量、实时增量

  1. dump系统,产出全量、增量
  2. 离线构建系统有两个任务
    1. processor负责读取全量/增量数据源并对每条doc处理,用加库的模型embedding成向量,归一化,写入swift(类似kafka)
    2. builder,以及在线服务会订阅swift,builder服务本地根据partition构建HNSW索引,产出全量和批次增量,分片检索
  1. 实时索引
    1. query dnn服务与searcher服务统一管控,item dnn加载到processor中量化
    2. hnsw支持插入,但不支持删除,改用软删除

性能优化

  1. 联合检索,带条件的向量检索
  2. query cache
  3. 在gpu中计算向量相似度

precision recall参数优化

  1. 建立ann与knn的准召率,比如直接在线抽样回放
  2. 最近邻超参tradeoff,参数越大准召率越高性能越差
  3. 距离公式,不能使用内积(不满足三角不等式,开根号),要用欧式距离,检索时转成内积

实时索引建库,结合item生命周期(新建实时生效,低pv item,失效item处理)的索引管理

分布式索引构建通常包括全量、批次增量、实时增量。数据join平台通过流批一体化生产全量和增量,其中增量通过swift消息分发到召回服务,所有的update操作会转成软delete后再add操作,会导致实时增量的索引增长非常迅速。

低pv item处理:item有2亿,分为了excellent、normal库,先seek excellent库,再用normal库补足,其中今天新发商品进excellent库

失效item处理:软delete,增量索引中bitmap标记doc是否存在,到多段索引合并时再真正delete

model serving优化,包括feature store设计(考虑特征版本号管理、实时特征读写更新、过期特征处理)、深度学习模型推理优化、模型运维管理

model serving优化

  1. op fusion、op placement

feature store:

  1. 用户特征中特征穿越问题

模型运维:

  1. 模型更新:模型增量训练后(ODL一样),model check auc(可能会训飞),发布到rtp灰度集群做打分平均判断,验证通过再部署到rtp online集群
  2. 模型发布:fg离在线一致性,模型打分离在线一致性

搜索引擎架构整体优化

失量检索引擎,设计细节

vector search,ann索引(ivf、hnsw)、index,几个特点:

  1. 分库和伸缩:离在线两部分,在线为两层分布式架构(qrs、searcher),离线对主键分片构建索引,分发到searcher集群,qrs将请求拆为多个,quota被均分后*1.2系数下发searcher召回过滤
  2. 多表join联合索引形成大宽表:在索引构建时主表添加辅表索引,seek主表不需查询辅表正排而是通过辅表地址获取正排值执行filter,既实现了大宽表又将拆表建索引。并且在seek阶段,多条索引链交并集seek(其中并集采用小根堆),边seek边filter,filter对象提前映射到对应正排索引,从多次寻址优化到1次寻址,这样的seek模式能保障有效召回量
  3. DAG图执行与模型推理统一:基于tensorflow框架,基于op schema自定义算子,组图实现流程编排。执行时DAG拓扑排序并行执行op,基于docid有序,可以分段并行seek&filter,减少rt。searcher load相关性dnn模型,本地完成推理,避免相关性服务IO
  4. ann检索:支持实时增量
    1. 分布式索引构建:在processor任务中加item塔,对doc量化,写入swift消息中间件,builder任务会读取,同时在线服务也会读取
    2. 在线实时增量构建:update操作会转成delete再add,但delete只是软删除,ivf/hnsw的add跟离线没差异,所以实时索引增长很快,需要用批次索引覆盖
    3. 在线查询:最近邻超参tradeoff,参数越大准召率越高性能越差,对比ann与knn的准召率调节超参

 

这篇关于技术点梳理0618的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073523

相关文章

Qt如何实现文本编辑器光标高亮技术

《Qt如何实现文本编辑器光标高亮技术》这篇文章主要为大家详细介绍了Qt如何实现文本编辑器光标高亮技术,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录实现代码函数作用概述代码详解 + 注释使用 QTextEdit 的高亮技术(重点)总结用到的关键技术点应用场景举例示例优化建议

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

Java使用WebView实现桌面程序的技术指南

《Java使用WebView实现桌面程序的技术指南》在现代软件开发中,许多应用需要在桌面程序中嵌入Web页面,例如,你可能需要在Java桌面应用中嵌入一部分Web前端,或者加载一个HTML5界面以增强... 目录1、简述2、WebView 特点3、搭建 WebView 示例3.1 添加 JavaFX 依赖3

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时