异步爬虫:aiohttp 异步请求库使用:

2024-06-19 00:36

本文主要是介绍异步爬虫:aiohttp 异步请求库使用:,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用requests 请求库虽然可以完成爬虫业务,但是对于异步任务来说,它是做不到的, 这时候我们需要借助 aiohttp 异步请求库来完成异步爬虫的编写:

话不多说,直接看示例:

注意:楼主使用的python版本是最新的,3.12的py版本, 另外pycharm使用的也是最新版的 2024版本的。 请务必与我保持一致, 否则会报很多莫名其妙的异常信息。

下载:

使用aiohttp 异步请求库请先pip 下载:

pip install aiohttp

基本实例:

import asyncio
import aiohttpasync def get(session, url):async with session.get(url) as response:return await response.text(), response.statusasync def test():url = "http://www.baidu.com"async with aiohttp.ClientSession() as session:html_text, status = await get(session, url)print(html_text)print(status)if __name__ == '__main__':asyncio.run(test())

以上代码示例首先我们需要导入两个库,分别是aiohttp,  asyncio,  因为要实现异步任务,而启动异步需要使用asyncio, 关于异步的知识点请自行查阅补充。

其次使用 async 关键字定义了一个 get 异步函数, 它接受了 session, url 两个参数, 而session则为aiohttp 中客户端ClientSession() 对象, 因为aiohttp 它提供了两套业务功能, 分别是服务端和客服端, 服务端主要就是实现处理客户端发送请求的异步业务, 而客户端,就是发送请求的,我们学爬虫,就需要学aiohttp 提供的客户端操作功能。 言归正传, 在这个get 方法中, 使用 async 关键字来声明一个异步上下文管理器<with ... as ...>, 然后返回所得到的响应,

而在test 异步函数中, 创建了一个ClientSession 对象, 然后调用get 函数,将session对象和url传递进去, 最后调用asyncio.run 启动协程任务。

请求:

GET:

对于一些有关于Get 请求携带参数的情况,我们可以使用 params 形参来完成

async def test():params = {"name": "I love Python", "code": 520}url = "https://www.httpbin.org/get"async with aiohttp.ClientSession() as session:# 使用params 形参传递get 请求数据async with session.get(url=url, params=params) as response:print(await response.text())if __name__ == '__main__':asyncio.run(test())

aiohttp 也提供了 POST, PUT, DELETE, HEAD, PATCH, OPTIONS 等请求方式。

POST:

而对于post 请求表单提交的数据, 例如Content-Type 为: application/X-www-form-urlencoded 的数据, 我们可以使用 data 形参来完成, 楼主看了一下源码,如果post 传递的数据为 json, 楼主斗胆猜一下,应该为json 形参,我们可以看一下源码:

由此可见,它的使用方式几乎和 requests 同步请求库一模一样

async def test():data = {"name": "I love Python", "code": 520}url = "https://www.httpbin.org/post"async with aiohttp.ClientSession() as session:# 使用 data 形参 传递 表单提交的数据async with session.post(url=url, data=data) as response:print(await response.text())if __name__ == '__main__':asyncio.run(test())

响应:

 对于响应结果,我们可以调用一下方法来获取其中的:状态码,响应头,响应体,响应体二进制内容,响应体JSON数据。

async def test():data = {"name": "I love Python", "code": 520}url = "https://www.httpbin.org/post"async with aiohttp.ClientSession() as session:async with session.post(url, data=data) as response:print(response.status) # 响应状态码print(response.headers) # 响应头print(await response.text()) # 获取响应体print(await response.read()) # 获取二进制数据print(await response.json()) # 获取相响应的JSON数据if __name__ == '__main__':asyncio.run(test())

超时设置:

我们可以借助aiohttp 提供的 ClientTimeout 对象来实现超时, 如果超时还未请求到数据,则抛异常

async def test():data = {"name": "I love Python", "code": 520}url = "https://www.httpbin.org/post"timeout = aiohttp.ClientTimeout(total=1) # 设置超时时间,单位为 秒async with aiohttp.ClientSession(timeout=timeout) as session:async with session.post(url, data=data) as response:passif __name__ == '__main__':asyncio.run(test())

ClientTimeout 对象同样还提供了其它参数, 例如:connect, socket_connect 等等, 详细参考官方文档:

https://docs.aiohttp.org.en.stable/client_quickstart.html#timeouts

并发限制:

由于异步爬虫拥有非常非常高的并发量, 如几万,几十万,甚至上百万都有可能, 但是如此高的并发量,目标服务器很可能无法再短时间内响应,而且有瞬间将目标服务器爬挂掉的危险, 所以,我们需要控制一下爬取的并发量。

我们可以借助asyncio 的 Semaphore 来控制并发量:


# 最高并发 5 个
CONCURRENCY = 5url = "http://www.baidu.com"# 创建信号量对象 并将最大并发量常量传递进来
semaphores = asyncio.Semaphore(CONCURRENCY)session = Noneasync def test():# 使用信号量对象创建异步上下文即可控制最高并发量async with semaphores:print("爬取ing: ", url)async with session.get(url) as response:await asyncio.sleep(1)return await response.text()async def main():global sessionsession = aiohttp.ClientSession()test_tasks = [test() for i in range(1000)]await asyncio.gather(*test_tasks)if __name__ == '__main__':asyncio.run(main())

完了.... aiohttp 官方网站: https://docs.aiohttp.org/

这篇关于异步爬虫:aiohttp 异步请求库使用:的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073509

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.