使用 Redis + Lua 实现分布式限流

2024-06-19 00:12

本文主要是介绍使用 Redis + Lua 实现分布式限流,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在线工具站
  • 推荐一个程序员在线工具站:程序员常用工具(http://cxytools.com),有时间戳、JSON格式化、文本对比、HASH生成、UUID生成等常用工具,效率加倍嘎嘎好用。
程序员资料站
  • 推荐一个程序员编程资料站:程序员的成长之路(http://cxyroad.com),收录了一些列的技术教程、各大面试专题,还有常用开发工具的教程。
小报童专栏精选Top100
  • 推荐一个小报童专栏导航站:小报童精选Top100(http://xbt100.top),收录了生财有术项目精选、AI海外赚钱、纯银的产品分析等专栏,陆续会收录更多的专栏,欢迎体验~

分布式系统中,限流是保证系统稳定性和可用性的重要措施之一。通过限流,可以避免流量突增对系统带来的冲击,保证系统的高可用性。Redis 作为一个高性能的内存数据库,不仅可以用来缓存数据,还可以用来实现分布式限流。而通过结合 Lua 脚本,可以更高效地实现复杂的限流逻辑。本文将介绍如何使用 Redis 和 Lua 脚本实现分布式限流。

为什么选择 Redis + Lua 实现限流

Redis 是一个高性能的键值存储系统,具有以下特点使其成为实现分布式限流的理想选择:

  1. 高性能:Redis 以内存存储为基础,读写速度极快,能够处理高并发请求。
  2. 丰富的数据结构:Redis 提供了多种数据结构,如字符串、列表、集合、哈希等,便于灵活实现各种限流策略。
  3. 持久化支持:Redis 支持数据持久化,可以在重启后恢复数据。
  4. Lua 脚本支持:Redis 内置 Lua 脚本引擎,可以在一次请求中执行一系列操作,保证原子性,避免并发问题。

限流策略介绍

常见的限流策略包括以下几种:

  1. 固定窗口限流:在固定时间窗口内限制请求数量,超过限制则拒绝请求。
  2. 滑动窗口限流:相对于固定窗口,滑动窗口限流更加精细化,可以更平滑地限制请求。
  3. 令牌桶算法:以固定速率生成令牌,请求需要消耗令牌,没有令牌则拒绝请求。
  4. 漏桶算法:以固定速率处理请求,超过速率的请求则排队等待。

本文将以固定窗口限流和令牌桶算法为例,介绍如何使用 Redis + Lua 实现分布式限流。

实现固定窗口限流

固定窗口限流是一种简单的限流策略,在固定时间窗口内限制请求数量。可以通过 Redis 的 INCREXPIRE 命令配合 Lua 脚本实现。

Lua 脚本实现

local key = KEYS[1]
local limit = tonumber(ARGV[1])
local current = tonumber(redis.call('GET', key) or "0")if current + 1 > limit thenreturn 0
elseredis.call("INCRBY", key, 1)redis.call("EXPIRE", key, ARGV[2])return 1
end

使用示例

假设限流策略为每分钟最多允许 100 次请求:

import redisclient = redis.StrictRedis(host='localhost', port=6379, db=0)# Lua script for fixed window rate limiting
lua_script = """
local key = KEYS[1]
local limit = tonumber(ARGV[1])
local current = tonumber(redis.call('GET', key) or "0")if current + 1 > limit thenreturn 0
elseredis.call("INCRBY", key, 1)redis.call("EXPIRE", key, ARGV[2])return 1
end
"""rate_limit_script = client.register_script(lua_script)key = "rate_limit:fixed_window"
limit = 100
expiry = 60  # time window in secondsresult = rate_limit_script(keys=[key], args=[limit, expiry])
if result == 1:print("Request allowed")
else:print("Request rate-limited")

实现令牌桶算法限流

令牌桶算法是另一种常见的限流策略,可以较好地平衡突发流量和长期流量。通过定期向桶中添加令牌,请求时消耗令牌,没有令牌则拒绝请求。

Lua 脚本实现

local key = KEYS[1]
local rate = tonumber(ARGV[1])
local burst = tonumber(ARGV[2])
local now = tonumber(ARGV[3])
local requested = tonumber(ARGV[4])local fill_time = burst / rate
local ttl = math.floor(fill_time * 2)
local last_tokens = tonumber(redis.call("GET", key .. ":tokens"))
if last_tokens == nil thenlast_tokens = burst
end
local last_refreshed = tonumber(redis.call("GET", key .. ":timestamp"))
if last_refreshed == nil thenlast_refreshed = 0
endlocal delta = math.max(0, now - last_refreshed)
local filled_tokens = math.min(burst, last_tokens + (delta * rate))
local allowed = filled_tokens >= requested
local new_tokens = filled_tokens
if allowed thennew_tokens = filled_tokens - requested
endredis.call("SETEX", key .. ":tokens", ttl, new_tokens)
redis.call("SETEX", key .. ":timestamp", ttl, now)return allowed and 1 or 0

使用示例

假设限流策略为每秒生成 10 个令牌,桶容量为 20:

import redis
import timeclient = redis.StrictRedis(host='localhost', port=6379, db=0)# Lua script for token bucket rate limiting
lua_script = """
local key = KEYS[1]
local rate = tonumber(ARGV[1])
local burst = tonumber(ARGV[2])
local now = tonumber(ARGV[3])
local requested = tonumber(ARGV[4])local fill_time = burst / rate
local ttl = math.floor(fill_time * 2)
local last_tokens = tonumber(redis.call("GET", key .. ":tokens"))
if last_tokens == nil thenlast_tokens = burst
end
local last_refreshed = tonumber(redis.call("GET", key .. ":timestamp"))
if last_refreshed == nil thenlast_refreshed = 0
endlocal delta = math.max(0, now - last_refreshed)
local filled_tokens = math.min(burst, last_tokens + (delta * rate))
local allowed = filled_tokens >= requested
local new_tokens = filled_tokens
if allowed thennew_tokens = filled_tokens - requested
endredis.call("SETEX", key .. ":tokens", ttl, new_tokens)
redis.call("SETEX", key .. ":timestamp", ttl, now)return allowed and 1 or 0
"""token_bucket_script = client.register_script(lua_script)key = "rate_limit:token_bucket"
rate = 10  # tokens per second
burst = 20  # bucket capacity
now = int(time.time())
requested = 1result = token_bucket_script(keys=[key], args=[rate, burst, now, requested])
if result == 1:print("Request allowed")
else:print("Request rate-limited")

优化和扩展

监控与报警

为了及时发现限流策略的异常情况,可以结合监控工具如 Prometheus 和 Grafana,对 Redis 的限流情况进行监控和报警。通过定期统计限流命中次数和请求数量,可以分析限流效果,并及时调整限流策略。

动态调整限流策略

在实际应用中,可能需要根据流量情况动态调整限流策略。可以结合 Redis 的 Pub/Sub 功能,通过发布和订阅消息来实时调整限流参数。

集群环境中的限流

在 Redis 集群环境中,可以将限流脚本分发到各个节点,确保限流逻辑在各个节点上执行。可以使用 Redis 的主从复制和分片机制,实现全局的分布式限流。

总结

通过结合 Redis 和 Lua 脚本,可以高效实现多种限流策略,如固定窗口限流和令牌桶算法。Redis 的高性能和丰富功能使其成为实现分布式限流的理想选择。

这篇关于使用 Redis + Lua 实现分布式限流的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1073454

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.