基于Spark3.3.4版本,实现Standalone 模式高可用集群部署

2024-06-18 19:04

本文主要是介绍基于Spark3.3.4版本,实现Standalone 模式高可用集群部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、环境描述

二、部署Spark 节点

2.1 下载资源包

2.2 解压

2.3 配置

2.3.1 配置环境变量

2.3.2 修改workers配置文件

2.3.3 修改spark.env.sh文件

2.3.4 修改spark-defaults.conf

2.4 分发

2.5 启动服务

2.5.1 启动zookeeper

2.5.2 启动hdfs

2.5.3 启动spark

2.6 测试

2.6.1 测试HA主备切换

2.6.2 测试Spark调度和计算功能


一、环境描述

系统环境描述:本教程基于CentOS 8.0版本虚拟机

Hadoop ha 集群环境说明:

机器节点信息:

Spark 集群环境说明:

机器节点信息:

注意: Spark Standalone 模式本身不依赖Hadoop,只是这里我需要使用hdfs,而且集群高可用模式也需要使用到Zookeeper,所以这里我会启动Zookeeper和hdfs,不需要启动Yarn 调度层了,可以不启动Yarn。

二、部署Spark 节点

2.1 下载资源包

Spark 包下载地址:

Index of /dist/spark/spark-3.3.4 (apache.org)

注意:需要和Hadoop体系的版本要保持一致,我这里的Hadoop是3.3.4版本,所以,我的Spark 版本也需要是3.3.4版本。

2.2 解压

tar -zxvf spark-3.3.4-bin-hadoop3.tgz

2.3 配置

可以参考官网,自己跟着官网自己学着部署,官网是最官方的,最正确的方式,官网参考地址:

Spark 独立模式 - Spark 3.3.4 文档 (apache.org)

2.3.1 配置环境变量

# 进入配置文件
vim /etc/profile
# 添加SPARK_HOME环境变量
export SPARK_HOME=/usr/local/spark-3.3.4-bin-hadoop3

2.3.2 修改workers配置文件

#重命名文件
mv workers.template workers
# 进入文件编辑
vim workers
# 添加worker节点
node3
node4

2.3.3 修改spark.env.sh文件

# 进入config目录
cd spark-3.3.4-bin-hadoop3/conf
# 重命名配置文件
mv spark-env.sh.template spark-env.sh
# 修改配置信息
vim spark-env.sh
export HADOOP_CONF_DIR=/usr/local/hadoop-3.3.4/etc/hadoop
export SPARK_MASTER_HOST=master # 因为我这里部署的是HA模式,所以在master节点,这里配置的是master,在node1节点,这里就是node1
export SPARK_MASTER_PORT=7077
export SPARK_MASTER_WEBUI_PORT=8080
export SPARK_WORKER_CORES=4
export SPARK_WORKER_MEMORY=4g

2.3.4 修改spark-defaults.conf

# 进入config目录
cd spark-3.3.4-bin-hadoop3/conf
# 重命名配置文件
mv spark-defaults.conf.template spark-defaults.conf
# 修改配置信息
vim spark-defaults.conf
spark.deploy.recoveryMode       ZOOKEEPER
spark.deploy.zookeeper.url      node2:2181,node3:2181,node4:2181
spark.deploy.zookeeper.dir      /spark
# 开启spark的日期记录功能
spark.eventLog.enabled	true
#创建spark日志路径,待会儿要创建
spark.eventLog.dir	hdfs://mycluster/spark-logsspark.history.fs.logDirectory  hdfs://mycluster/spark-logs
spark.yarn.jars  hdfs://mycluster/work/spark_lib/jars/*

2.4 分发

将配置好的spark-3.3.4-bin-hadoop3 分发到其他服务器

# 分发spark 包 
scp -r /usr/local/spark-3.3.4-bin-hadoop3/ node1:/usr/local/
scp -r /usr/local/spark-3.3.4-bin-hadoop3/ node3:/usr/local/
scp -r /usr/local/spark-3.3.4-bin-hadoop3/ node4:/usr/local/
# 分发环境变量文件(记得到各自的服务器执行 source /etc/profile 使配置生效)
scp -r /etc/profile node1:/etc/profile
scp -r /etc/profile node3:/etc/profile
scp -r /etc/profile node4:/etc/profile

2.5 启动服务

2.5.1 启动zookeeper

# 启动zookeeper (需要分别启动)
zkServer.sh start

2.5.2 启动hdfs

start-dfs.sh start

2.5.3 启动spark

# 进入spark命令目录
/usr/local/spark-3.3.4-bin-hadoop3/sbin
# 启动服务
./start-all.sh
# 启动node1的master
./start-master.sh

接着验证一下,启动的服务是不是按照我们配置的那样:

检验下master节点,看下是否有Master进程:

发现有了,那证明主节点启动起来了

接着验证下node3、node4,看下是否有Worker进程:

我们从上图中发现,node3,node4节点,分别有Worker进程了,说明集群部署成功了。

最后检查下node1节点,是不是有Master进程:

Ok,我们现在发现已经启动了两个Master进程了,一个在master节点,一个在node1节点。

我们可以通过Spark UI页面看下信息,访问http://master:8080

接着访问http://node1:8080

我们发现,node1节点的状态是standby状态

到此,我们Spark Stanalone模式HA就算部署成功了

2.6 测试

2.6.1 测试HA主备切换

为了验证主备切换的情况,我们可以把活跃(ALIVE)的主节点kill掉,观察之前备用(StandBy)的节点是否会做切换,升级为主节点:

# 查看master进程编号
jps
# kill -9 pid

kill掉了master节点的Master进程,看下是否切换到node1的Master中

从上图中可以看到,Master进程切换到了node1,状态为ALIVE状态,证明HA起到了作用,验证完成。

2.6.2 测试Spark调度和计算功能

# 提交jar包到集群
bin/spark-submit --master spark://master:7077,node1:7077 --class org.apache.spark.examples.SparkPi  /usr/local/spark-3.3.4-bin-hadoop3/examples/jars/spark-examples_2.12-3.3.4.jar 100000

从以上图片中我们可以看到,提交的任务进入到了Spark 集群调度中,且已经在运行了,整个部署到此结束。

今天基于Spark3.3.4版本,实现Standalone 模式高可用集群部署的相关内容就分享到这里,可以关注Spark专栏《Spark》,后续不定期分享相关技术文章。如果帮助到大家,欢迎大家点赞+关注+收藏,有疑问也欢迎大家评论留言!

这篇关于基于Spark3.3.4版本,实现Standalone 模式高可用集群部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1072840

相关文章

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

Java反射实现多属性去重与分组功能

《Java反射实现多属性去重与分组功能》在Java开发中,​​List是一种非常常用的数据结构,通常我们会遇到这样的问题:如何处理​​List​​​中的相同字段?无论是去重还是分组,合理的操作可以提高... 目录一、开发环境与基础组件准备1.环境配置:2. 代码结构说明:二、基础反射工具:BeanUtils

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程