动手学深度学习(Pytorch版)代码实践 -深度学习基础-08多层感知机简洁版

本文主要是介绍动手学深度学习(Pytorch版)代码实践 -深度学习基础-08多层感知机简洁版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

08多层感知机简洁版

import torch
from torch import nn
from d2l import torch as d2l
import liliPytorch as lpnet = nn.Sequential(nn.Flatten(),nn.Linear(784,256),nn.ReLU(),nn.Linear(256,10)  
)#函数接受一个参数 m,通常是一个神经网络模块(例如,线性层,卷积层等)
def init_weights(m):
#这行代码检查传入的模块 m 是否是 nn.Linear 类型,即线性层(全连接层)if type(m) == nn.Linear:nn.init.normal_(m.weight,std=0.01)
#m.weight 是线性层的权重矩阵。
#std=0.01 指定了初始化权重的标准差为 0.01,表示权重将从均值为0,标准差为0.01的正态分布中随机采样。#model.apply(init_weights) 会遍历模型的所有模块,并对每个模块调用 init_weights 函数。
#如果模块是 nn.Linear 类型,则初始化它的权重。
net.apply(init_weights)batch_size, lr, num_epochs = 256, 0.1, 10
loss = nn.CrossEntropyLoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(),lr=lr)
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)#训练
lp.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)#验证
lp.predict_ch3(net, test_iter)
d2l.plt.show() 

运行结果:

<Figure size 350x250 with 1 Axes>
epoch: 1,train_loss: 1.0443685918807983,train_acc: 0.64345,test_acc: 0.7608
<Figure size 350x250 with 1 Axes>
epoch: 2,train_loss: 0.5980708345413208,train_acc: 0.7904166666666667,test_acc: 0.7707
<Figure size 350x250 with 1 Axes>
epoch: 3,train_loss: 0.5194601311365763,train_acc: 0.8209166666666666,test_acc: 0.8143
<Figure size 350x250 with 1 Axes>
epoch: 4,train_loss: 0.4801325536727905,train_acc: 0.8319666666666666,test_acc: 0.827
<Figure size 350x250 with 1 Axes>
epoch: 5,train_loss: 0.4518238489786784,train_acc: 0.8414833333333334,test_acc: 0.8358

这篇关于动手学深度学习(Pytorch版)代码实践 -深度学习基础-08多层感知机简洁版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072788

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa