FuzzyKmeans的Mahout实现

2024-06-18 18:08
文章标签 实现 mahout fuzzykmeans

本文主要是介绍FuzzyKmeans的Mahout实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

不得不说,google更靠谱,比google更更靠谱的是官网!!!

so要好好利用google and official website!!!

https://mahout.apache.org/users/clustering/fuzzy-k-means.html

Fuzzy K-Means

Fuzzy K-Means (also called Fuzzy C-Means) is an extension of K-Means , the popular simple clustering technique. While K-Means discovers hard clusters (a point belong to only one cluster), Fuzzy K-Means is a more statistically formalized method and discovers soft clusters where a particular point can belong to more than one cluster with certain probability.

Algorithm

Like K-Means, Fuzzy K-Means works on those objects which can be represented in n-dimensional vector space and a distance measure is defined. The algorithm is similar to k-means.

  • Initialize k clusters
  • Until converged
    • Compute the probability of a point belong to a cluster for every pair
    • Recompute the cluster centers using above probability membership values of points to clusters

Design Implementation

The design is similar to K-Means present in Mahout. It accepts an input file containing vector points. User can either provide the cluster centers as input or can allow canopy algorithm to run and create initial clusters.

Similar to K-Means, the program doesn't modify the input directories. And for every iteration, the cluster output is stored in a directory cluster-N. The code has set number of reduce tasks equal to number of map tasks. So, those many part-0

Files are created in clusterN directory. The code uses driver/mapper/combiner/reducer as follows:

FuzzyKMeansDriver - This is similar to  KMeansDriver. It iterates over input points and cluster points for specified number of iterations or until it is converged.During every iteration i, a new cluster-i directory is created which contains the modified cluster centers obtained during FuzzyKMeans iteration. This will be feeded as input clusters in the next iteration.  Once Fuzzy KMeans is run for specified number of iterations or until it is converged, a map task is run to output "the point and the cluster membership to each cluster" pair as final output to a directory named "points".

FuzzyKMeansMapper - reads the input cluster during its configure() method, then  computes cluster membership probability of a point to each cluster.Cluster membership is inversely propotional to the distance. Distance is computed using  user supplied distance measure. Output key is encoded clusterId. Output values are ClusterObservations containing observation statistics.

FuzzyKMeansCombiner - receives all key:value pairs from the mapper and produces partial sums of the cluster membership probability times input vectors for each cluster. Output key is: encoded cluster identifier. Output values are ClusterObservations containing observation statistics.

FuzzyKMeansReducer - Multiple reducers receives certain keys and all values associated with those keys. The reducer sums the values to produce a new centroid for the cluster which is output. Output key is: encoded cluster identifier (e.g. "C14". Output value is: formatted cluster identifier (e.g. "C14"). The reducer encodes unconverged clusters with a 'Cn' cluster Id and converged clusters with 'Vn' clusterId.

Running Fuzzy k-Means Clustering

The Fuzzy k-Means clustering algorithm may be run using a command-line invocation on FuzzyKMeansDriver.main or by making a Java call to FuzzyKMeansDriver.run().

Invocation using the command line takes the form:

bin/mahout fkmeans \-i <input vectors directory> \-c <input clusters directory> \-o <output working directory> \-dm <DistanceMeasure> \-m <fuzziness argument >1> \-x <maximum number of iterations> \-k <optional number of initial clusters to sample from input vectors> \-cd <optional convergence delta. Default is 0.5> \-ow <overwrite output directory if present>-cl <run input vector clustering after computing Clusters>-e <emit vectors to most likely cluster during clustering>-t <threshold to use for clustering if -e is false>-xm <execution method: sequential or mapreduce>

Note: if the -k argument is supplied, any clusters in the -c directory will be overwritten and -k random points will be sampled from the input vectors to become the initial cluster centers.

Invocation using Java involves supplying the following arguments:

  1. input: a file path string to a directory containing the input data set a SequenceFile(WritableComparable, VectorWritable). The sequence file key is not used.
  2. clustersIn: a file path string to a directory containing the initial clusters, a SequenceFile(key, SoftCluster | Cluster | Canopy). Fuzzy k-Means SoftClusters, k-Means Clusters and Canopy Canopies may be used for the initial clusters.
  3. output: a file path string to an empty directory which is used for all output from the algorithm.
  4. measure: the fully-qualified class name of an instance of DistanceMeasure which will be used for the clustering.
  5. convergence: a double value used to determine if the algorithm has converged (clusters have not moved more than the value in the last iteration)
  6. max-iterations: the maximum number of iterations to run, independent of the convergence specified
  7. m: the "fuzzyness" argument, a double > 1. For m equal to 2, this is equivalent to normalising the coefficient linearly to make their sum 1. When m is close to 1, then the cluster center closest to the point is given much more weight than the others, and the algorithm is similar to k-means.
  8. runClustering: a boolean indicating, if true, that the clustering step is to be executed after clusters have been determined.
  9. emitMostLikely: a boolean indicating, if true, that the clustering step should only emit the most likely cluster for each clustered point.
  10. threshold: a double indicating, if emitMostLikely is false, the cluster probability threshold used for emitting multiple clusters for each point. A value of 0 will emit all clusters with their associated probabilities for each vector.
  11. runSequential: a boolean indicating, if true, that the algorithm is to use the sequential reference implementation running in memory.

After running the algorithm, the output directory will contain: 1. clusters-N: directories containing SequenceFiles(Text, SoftCluster) produced by the algorithm for each iteration. The Text key is a cluster identifier string. 1. clusteredPoints: (if runClustering enabled) a directory containing SequenceFile(IntWritable, WeightedVectorWritable). The IntWritable key is the clusterId. The WeightedVectorWritable value is a bean containing a double weight and a VectorWritable vector where the weights are computed as 1/(1+distance) where the distance is between the cluster center and the vector using the chosen DistanceMeasure.

Examples

The following images illustrate Fuzzy k-Means clustering applied to a set of randomly-generated 2-d data points. The points are generated using a normal distribution centered at a mean location and with a constant standard deviation. See the README file in the /examples/src/main/java/org/apache/mahout/clustering/display/README.txt for details on running similar examples.

The points are generated as follows:

  • 500 samples m=[1.0, 1.0](1.0,-1.0.html) sd=3.0
  • 300 samples m=[1.0, 0.0](1.0,-0.0.html) sd=0.5
  • 300 samples m=[0.0, 2.0](0.0,-2.0.html) sd=0.1

In the first image, the points are plotted and the 3-sigma boundaries of their generator are superimposed.

fuzzy

In the second image, the resulting clusters (k=3) are shown superimposed upon the sample data. As Fuzzy k-Means is an iterative algorithm, the centers of the clusters in each recent iteration are shown using different colors. Bold red is the final clustering and previous iterations are shown in [orange, yellow, green, blue, violet and gray](orange,-yellow,-green,-blue,-violet-and-gray.html) . Although it misses a lot of the points and cannot capture the original, superimposed cluster centers, it does a decent job of clustering this data.

fuzzy

The third image shows the results of running Fuzzy k-Means on a different data set which is generated using asymmetrical standard deviations. Fuzzy k-Means does a fair job handling this data set as well.

fuzzy


这篇关于FuzzyKmeans的Mahout实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072722

相关文章

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机