基于Python引擎的PP-OCR模型库推理

2024-06-18 15:36

本文主要是介绍基于Python引擎的PP-OCR模型库推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于Python引擎的PP-OCR模型库推理


1. 文本检测模型推理

# 下载超轻量中文检测模型:
wget  https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xf ch_PP-OCRv3_det_infer.tar
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/"

通过参数limit_type和det_limit_side_len来对图片的尺寸进行限制, limit_type可选参数为[max, min], det_limit_size_len 为正整数,一般设置为32 的倍数,比如960。

参数默认设置为limit_type=‘max’, det_limit_side_len=960。表示网络输入图像的最长边不能超过960, 如果超过这个值,会对图像做等宽比的resize操作,确保最长边为det_limit_side_len。 设置为limit_type=‘min’, det_limit_side_len=960 则表示限制图像的最短边为960。

如果想使用CPU进行预测:

python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/"  --use_gpu=False

2. 文本识别模型推理

2.1 超轻量中文识别模型推理

注意 PP-OCRv3的识别模型使用的输入shape为3,48,320, 如果使用其他识别模型,则需根据模型设置参数–rec_image_shape。此外,PP-OCRv3的识别模型默认使用的rec_algorithm为SVTR_LCNet,注意和原始SVTR的区别。

超轻量中文识别模型推理,可以执行如下命令:

# 下载超轻量中文识别模型:
wget  https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xf ch_PP-OCRv3_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./ch_PP-OCRv3_rec_infer/"

2.2 英文识别模型推理

# 下载英文数字识别模型:
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar
tar xf en_PP-OCRv3_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./en_PP-OCRv3_rec_infer/" --rec_char_dict_path="ppocr/utils/en_dict.txt"

2.3 多语言模型的推理

如果您需要预测的是其他语言模型,可以在此链接中找到对应语言的inference模型,在使用inference模型预测时,需要通过–rec_char_dict_path指定使用的字典路径, 同时为了得到正确的可视化结果,需要通过 --vis_font_path 指定可视化的字体路径,doc/fonts/ 路径下有默认提供的小语种字体,例如韩文识别:

wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"

3. 方向分类模型推理

# 下载超轻量中文方向分类器模型:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"

4. 文本检测、方向分类和文字识别串联推理

注意 PP-OCRv3的识别模型使用的输入shape为3,48,320, 如果使用其他识别模型,则需根据模型设置参数–rec_image_shape。此外,PP-OCRv3的识别模型默认使用的rec_algorithm为SVTR_LCNet,注意和原始SVTR的区别。

以超轻量中文OCR模型推理为例,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径,也支持PDF文件、参数det_model_dir,cls_model_dir和rec_model_dir分别指定检测,方向分类和识别的inference模型路径。参数use_angle_cls用于控制是否启用方向分类模型。use_mp表示是否使用多进程(Paddle Inference并不是线程安全,建议使用多进程)。total_process_num表示在使用多进程时的进程数。可视化识别结果默认保存到 ./inference_results 文件夹里面。

# 使用方向分类器
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --cls_model_dir="./cls/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=true
# 不使用方向分类器
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=false
# 使用多进程
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=false --use_mp=True --total_process_num=6
# 使用PDF文件,可以通过使用`page_num`参数来控制推理前几页,默认为0,表示推理所有页
python3 tools/infer/predict_system.py --image_dir="./xxx.pdf" --det_model_dir="./ch_PP-OCRv3_det_infer/" --cls_model_dir="./cls/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=true --page_num=2

5. TensorRT推理

Paddle Inference 采用子图的形式集成 TensorRT,针对 GPU 推理场景,TensorRT 可对一些子图进行优化,包括 OP 的横向和纵向融合,过滤冗余的 OP,并为 OP 自动选择最优的 kernel,加快推理速度。

如果希望使用Paddle Inference进行TRT推理,一般需要2个步骤。

  • (1)收集该模型关于特定数据集的动态shape信息,并存储到文件中。
  • (2)加载动态shape信息文件,进行TRT推理。
    以文本检测模型为例,首先使用下面的命令,生成动态shape文件,最终会在ch_PP-OCRv3_det_infer目录下面生成det_trt_dynamic_shape.txt的文件,该文件即存储了动态shape信息的文件。
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --use_tensorrt=True

上面的推理过程仅用于收集动态shape信息,没有用TRT进行推理。

运行完成以后,再使用下面的命令,进行TRT推理。

python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --use_tensorrt=True

注意:

  • 如果在第一步中,已经存在动态shape信息文件,则无需重新收集,直接预测,即使用TRT推理;如果希望重新生成动态shape信息文件,则需要先将模型目录下的动态shape信息文件删掉,再重新生成。
  • 动态shape信息文件一般情况下仅需生成一次。在实际部署过程中,建议首先在线下验证集或者测试集合上生成好,之后可以直接加载该文件进行线上TRT推理。

这篇关于基于Python引擎的PP-OCR模型库推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072397

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too