基于Python引擎的PP-OCR模型库推理

2024-06-18 15:36

本文主要是介绍基于Python引擎的PP-OCR模型库推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于Python引擎的PP-OCR模型库推理


1. 文本检测模型推理

# 下载超轻量中文检测模型:
wget  https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xf ch_PP-OCRv3_det_infer.tar
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/"

通过参数limit_type和det_limit_side_len来对图片的尺寸进行限制, limit_type可选参数为[max, min], det_limit_size_len 为正整数,一般设置为32 的倍数,比如960。

参数默认设置为limit_type=‘max’, det_limit_side_len=960。表示网络输入图像的最长边不能超过960, 如果超过这个值,会对图像做等宽比的resize操作,确保最长边为det_limit_side_len。 设置为limit_type=‘min’, det_limit_side_len=960 则表示限制图像的最短边为960。

如果想使用CPU进行预测:

python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/"  --use_gpu=False

2. 文本识别模型推理

2.1 超轻量中文识别模型推理

注意 PP-OCRv3的识别模型使用的输入shape为3,48,320, 如果使用其他识别模型,则需根据模型设置参数–rec_image_shape。此外,PP-OCRv3的识别模型默认使用的rec_algorithm为SVTR_LCNet,注意和原始SVTR的区别。

超轻量中文识别模型推理,可以执行如下命令:

# 下载超轻量中文识别模型:
wget  https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xf ch_PP-OCRv3_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./ch_PP-OCRv3_rec_infer/"

2.2 英文识别模型推理

# 下载英文数字识别模型:
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar
tar xf en_PP-OCRv3_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./en_PP-OCRv3_rec_infer/" --rec_char_dict_path="ppocr/utils/en_dict.txt"

2.3 多语言模型的推理

如果您需要预测的是其他语言模型,可以在此链接中找到对应语言的inference模型,在使用inference模型预测时,需要通过–rec_char_dict_path指定使用的字典路径, 同时为了得到正确的可视化结果,需要通过 --vis_font_path 指定可视化的字体路径,doc/fonts/ 路径下有默认提供的小语种字体,例如韩文识别:

wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"

3. 方向分类模型推理

# 下载超轻量中文方向分类器模型:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"

4. 文本检测、方向分类和文字识别串联推理

注意 PP-OCRv3的识别模型使用的输入shape为3,48,320, 如果使用其他识别模型,则需根据模型设置参数–rec_image_shape。此外,PP-OCRv3的识别模型默认使用的rec_algorithm为SVTR_LCNet,注意和原始SVTR的区别。

以超轻量中文OCR模型推理为例,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径,也支持PDF文件、参数det_model_dir,cls_model_dir和rec_model_dir分别指定检测,方向分类和识别的inference模型路径。参数use_angle_cls用于控制是否启用方向分类模型。use_mp表示是否使用多进程(Paddle Inference并不是线程安全,建议使用多进程)。total_process_num表示在使用多进程时的进程数。可视化识别结果默认保存到 ./inference_results 文件夹里面。

# 使用方向分类器
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --cls_model_dir="./cls/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=true
# 不使用方向分类器
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=false
# 使用多进程
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=false --use_mp=True --total_process_num=6
# 使用PDF文件,可以通过使用`page_num`参数来控制推理前几页,默认为0,表示推理所有页
python3 tools/infer/predict_system.py --image_dir="./xxx.pdf" --det_model_dir="./ch_PP-OCRv3_det_infer/" --cls_model_dir="./cls/" --rec_model_dir="./ch_PP-OCRv3_rec_infer/" --use_angle_cls=true --page_num=2

5. TensorRT推理

Paddle Inference 采用子图的形式集成 TensorRT,针对 GPU 推理场景,TensorRT 可对一些子图进行优化,包括 OP 的横向和纵向融合,过滤冗余的 OP,并为 OP 自动选择最优的 kernel,加快推理速度。

如果希望使用Paddle Inference进行TRT推理,一般需要2个步骤。

  • (1)收集该模型关于特定数据集的动态shape信息,并存储到文件中。
  • (2)加载动态shape信息文件,进行TRT推理。
    以文本检测模型为例,首先使用下面的命令,生成动态shape文件,最终会在ch_PP-OCRv3_det_infer目录下面生成det_trt_dynamic_shape.txt的文件,该文件即存储了动态shape信息的文件。
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --use_tensorrt=True

上面的推理过程仅用于收集动态shape信息,没有用TRT进行推理。

运行完成以后,再使用下面的命令,进行TRT推理。

python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./ch_PP-OCRv3_det_infer/" --use_tensorrt=True

注意:

  • 如果在第一步中,已经存在动态shape信息文件,则无需重新收集,直接预测,即使用TRT推理;如果希望重新生成动态shape信息文件,则需要先将模型目录下的动态shape信息文件删掉,再重新生成。
  • 动态shape信息文件一般情况下仅需生成一次。在实际部署过程中,建议首先在线下验证集或者测试集合上生成好,之后可以直接加载该文件进行线上TRT推理。

这篇关于基于Python引擎的PP-OCR模型库推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072397

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar