【数据结构】第十七弹---C语言实现选择排序

2024-06-18 13:52

本文主要是介绍【数据结构】第十七弹---C语言实现选择排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】

目录

1、选择排序

1.1、基本思想

1.2、代码实现

1.3、代码测试

1.4、时空复杂度分析

总结


1、选择排序

1.1、基本思想

选择排序是一种简单直观的比较排序算法。该算法的基本思想是在每一轮中选出当前未排序部分的最小(或最大)元素,然后将其放置到未排序序列的起始位置,这个过程一直重复直至整个数组被排序。

选择排序的具体步骤如下:

★ 从数组的当前未排序部分选择最小(或最大)的一个元素
★ 将这个最小(或最大)元素与未排序序列的第一个元素交换位置
★ 然后从剩余未排序的元素中继续这个过程,将每一次找到的最小(或最大)元素放到未排序序列的开始。
★ 这个过程一直进行到整个数组的所有元素都被排为有序状态

1.2、代码实现

此处可以进行一个小的优化,同时找最小值与最大值,但是有一个细节需要注意,先上代码。

此处还需要交换元素,所以提前封装一个交换函数。

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
void SelectSort(int a[], int n)
{int begin = 0;int end = n - 1;while (begin < end){int maxi = begin;//找最大值的下标int mini = begin;//找最小值的下标for (int i = begin + 1; i <= end; i++){if (a[i] < a[mini]){mini = i;}if (a[i] > a[maxi]){maxi = i;}}Swap(&a[begin], &a[mini]);Swap(&a[end], &a[maxi]);begin++;end--;}
}

★ 首先初始化两个索引beginend,分别代表当前未排序序列的开始和结束位置。

★ 进入一个循环,条件是begin < end,确保在数组中还有未排序的元素。

★ 遍历一遍序列,找到最大元素和最小元素的下标。

★ 将最小元素与序列的始端交换,最大元素与序列的尾端交换。

更新begin与end。

思考一下上面写的代码有没有问题呢???

答案是有问题的,因为这里我们是首先进行最小元素与首位置更换,再进行最大元素与末尾更换,如果我的最大元素就在首位置就会有问题,如下图:

如果最大值就在第一个位置时需要更新最大值的下标!!! 

正确的代码如下:

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
void SelectSort(int a[], int n)
{int begin = 0;int end = n - 1;while (begin < end){int maxi = begin;//找最大值的下标int mini = begin;//找最小值的下标for (int i = begin + 1; i <= end; i++){if (a[i] < a[mini]){mini = i;}if (a[i] > a[maxi]){maxi = i;}}Swap(&a[begin], &a[mini]);//最大值的位置跟最小值重合//mini被换到maxi位置时  原本的最大值则是miniif (maxi == begin)maxi = mini;Swap(&a[end], &a[maxi]);begin++;end--;}
}

注意:

1.这里是对最初的选择排序进行优化,最小值最大值一起进行的。

2.当最大值被交换后,需要重新赋值。 


 1.3、代码测试

测试代码:

//测试选择排序
int main()
{int a[] = { 9,8,7,6,5,4,3,2,1,0 };//给一组数据int sz = sizeof(a) / sizeof(a[0]);//计算数组元素个数printf("排序前:\n");ArrayPrint(a, sz);SelectSort(a, sz);printf("排序后:\n");ArrayPrint(a, sz);return 0;
}

 测试结果:

1.4、时空复杂度分析

时间复杂度

最好、平均、最坏情况下的时间复杂度都是 O(n^2)。

原因在于,不管数组的初始顺序如何,选择排序都需要比较所有未排序的元素来找到最小(或最大)的元素,并执行这个过程 n-1 次(对于 n 个元素的数组)。每次选择操作需要比较的次数从 n-1 次减少到 1 次,总共的比较次数是 (n-1) + (n-2) + … + 1 = n(n-1)/2,这是一个二次函数,因此时间复杂度为 O(n^2)。

空间复杂度

选择排序是一种原地排序算法,除了输入数组外,它只需要有限的几个变量(比如,用于存储最小元素下标的变量和循环计数器)。因此,它的空间复杂度为常数空间O(1)。

选择排序的特性总结:

1. 选择排序思考非常好理解,但是效率不是很好。实际中很少使用。
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:不稳定

5. 复杂性:简单

总结


本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

这篇关于【数据结构】第十七弹---C语言实现选择排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072177

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q