【数据结构】第十七弹---C语言实现选择排序

2024-06-18 13:52

本文主要是介绍【数据结构】第十七弹---C语言实现选择排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

个人主页: 熬夜学编程的小林

💗系列专栏: 【C语言详解】 【数据结构详解】【C++详解】

目录

1、选择排序

1.1、基本思想

1.2、代码实现

1.3、代码测试

1.4、时空复杂度分析

总结


1、选择排序

1.1、基本思想

选择排序是一种简单直观的比较排序算法。该算法的基本思想是在每一轮中选出当前未排序部分的最小(或最大)元素,然后将其放置到未排序序列的起始位置,这个过程一直重复直至整个数组被排序。

选择排序的具体步骤如下:

★ 从数组的当前未排序部分选择最小(或最大)的一个元素
★ 将这个最小(或最大)元素与未排序序列的第一个元素交换位置
★ 然后从剩余未排序的元素中继续这个过程,将每一次找到的最小(或最大)元素放到未排序序列的开始。
★ 这个过程一直进行到整个数组的所有元素都被排为有序状态

1.2、代码实现

此处可以进行一个小的优化,同时找最小值与最大值,但是有一个细节需要注意,先上代码。

此处还需要交换元素,所以提前封装一个交换函数。

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
void SelectSort(int a[], int n)
{int begin = 0;int end = n - 1;while (begin < end){int maxi = begin;//找最大值的下标int mini = begin;//找最小值的下标for (int i = begin + 1; i <= end; i++){if (a[i] < a[mini]){mini = i;}if (a[i] > a[maxi]){maxi = i;}}Swap(&a[begin], &a[mini]);Swap(&a[end], &a[maxi]);begin++;end--;}
}

★ 首先初始化两个索引beginend,分别代表当前未排序序列的开始和结束位置。

★ 进入一个循环,条件是begin < end,确保在数组中还有未排序的元素。

★ 遍历一遍序列,找到最大元素和最小元素的下标。

★ 将最小元素与序列的始端交换,最大元素与序列的尾端交换。

更新begin与end。

思考一下上面写的代码有没有问题呢???

答案是有问题的,因为这里我们是首先进行最小元素与首位置更换,再进行最大元素与末尾更换,如果我的最大元素就在首位置就会有问题,如下图:

如果最大值就在第一个位置时需要更新最大值的下标!!! 

正确的代码如下:

void Swap(int* p1, int* p2)
{int tmp = *p1;*p1 = *p2;*p2 = tmp;
}
void SelectSort(int a[], int n)
{int begin = 0;int end = n - 1;while (begin < end){int maxi = begin;//找最大值的下标int mini = begin;//找最小值的下标for (int i = begin + 1; i <= end; i++){if (a[i] < a[mini]){mini = i;}if (a[i] > a[maxi]){maxi = i;}}Swap(&a[begin], &a[mini]);//最大值的位置跟最小值重合//mini被换到maxi位置时  原本的最大值则是miniif (maxi == begin)maxi = mini;Swap(&a[end], &a[maxi]);begin++;end--;}
}

注意:

1.这里是对最初的选择排序进行优化,最小值最大值一起进行的。

2.当最大值被交换后,需要重新赋值。 


 1.3、代码测试

测试代码:

//测试选择排序
int main()
{int a[] = { 9,8,7,6,5,4,3,2,1,0 };//给一组数据int sz = sizeof(a) / sizeof(a[0]);//计算数组元素个数printf("排序前:\n");ArrayPrint(a, sz);SelectSort(a, sz);printf("排序后:\n");ArrayPrint(a, sz);return 0;
}

 测试结果:

1.4、时空复杂度分析

时间复杂度

最好、平均、最坏情况下的时间复杂度都是 O(n^2)。

原因在于,不管数组的初始顺序如何,选择排序都需要比较所有未排序的元素来找到最小(或最大)的元素,并执行这个过程 n-1 次(对于 n 个元素的数组)。每次选择操作需要比较的次数从 n-1 次减少到 1 次,总共的比较次数是 (n-1) + (n-2) + … + 1 = n(n-1)/2,这是一个二次函数,因此时间复杂度为 O(n^2)。

空间复杂度

选择排序是一种原地排序算法,除了输入数组外,它只需要有限的几个变量(比如,用于存储最小元素下标的变量和循环计数器)。因此,它的空间复杂度为常数空间O(1)。

选择排序的特性总结:

1. 选择排序思考非常好理解,但是效率不是很好。实际中很少使用。
2. 时间复杂度:O(N^2)
3. 空间复杂度:O(1)
4. 稳定性:不稳定

5. 复杂性:简单

总结


本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!

这篇关于【数据结构】第十七弹---C语言实现选择排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1072177

相关文章

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM