基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真

本文主要是介绍基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 系统架构

4.2 GoogLeNet网络简介

4.3 手势检测

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

训练过程如下:

将摄像头对准手势,然后进行识别,识别结果如下:

本课题中,使用的USB摄像头为:

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

程序中包括MATLAB读取摄像头的配置方法,摄像头配置工具箱安装文件。

.............................................................
vid = videoinput('winvideo',1,'YUY2_640x480');%设置视频对象
set(vid, 'ReturnedColorSpace', 'rgb');%将视频对象设置为始终返回rgb图像:
triggerconfig(vid,'manual');
start(vid)%初始化帧计数器和fps变量
counter = 0;
fps = 0;
runtime = 100;%程序运行时间
h = figure(1);
tic
timeTracker = toc;
tmps=[]; 
tmps2=[];
while toc < runtime counter = counter + 1;% Get a new frame from the cameraimg = getsnapshot(vid);%进行识别[R,C,K] = size(img);I2      = imresize(img,[224,224]);[Predicted_Label, Probability] = classify(net, I2);Predicted_Labelimshow(img, []); end
148

4.算法理论概述

        深度学习是一种机器学习技术,它通过构建多层神经网络来模拟人脑的神经元之间的连接,实现对数据的学习和特征提取。卷积神经网络(CNN)是深度学习中的一种重要结构,特别适用于图像识别任务。它通过卷积层、池化层和全连接层来逐层提取和学习图像的特征。

        基于GoogLeNet深度学习网络的USB摄像头实时视频采集与手势检测识别是一个集成了图像处理、计算机视觉和深度学习技术的复杂系统。这个系统从视频流的实时采集到手势的识别,涵盖了多个技术环节。

4.1 系统架构

整个系统大致可分为以下几个步骤:

  • 视频采集:通过USB摄像头采集实时视频流。
  • 手势检测:利用GoogLeNet或其他深度学习网络进行图像分割,识别出可能包含手势的区域。
  • 手势识别:对检测到的手势区域进一步分析,识别出手势类别。
  • 决策与反馈:根据识别结果做出相应动作或反馈信息。

4.2 GoogLeNet网络简介

        GoogLeNet,又名Inception网络,是Google在2014年提出的一种深度学习模型,它通过引入Inception模块解决了深层神经网络中的计算复杂度和过拟合问题。Inception模块包含多个并行的卷积层,每个卷积层有不同的过滤器大小,这样可以在不显著增加参数数量的情况下,大幅增加网络的宽度和深度。GoogLeNet亮点如下:

1.引入了Inception结构(融合不同尺度的特征信息)
2.使用1x1的卷积核进行降维以及映射处理
3.添加两个辅助分类器帮助训练
4.丢弃全连接层,使用平均池化层(大大减少模型参数)


4.3 手势检测

       手势检测通常涉及滑动窗口或基于区域提议的策略,使用GoogLeNet进行初步的区域分类。以区域提议网络(Region Proposal Network, RPN)为例,其输出一系列候选框B={b1​,b2​,...,bn​},每个候选框带有类别分数si​和位置偏移Δbi​。

        在识别阶段,对每个候选框bi​裁剪出区域,送入GoogLeNet进行分类。GoogLeNet的输出层是一个softmax函数,给出各个类别的概率分布:

       为了实现实时处理,通常采用GPU加速计算,以及轻量化模型和算法优化,如模型剪枝、量化、使用更高效的网络结构等。

       基于GoogLeNet的实时视频手势识别系统,结合了深度学习的强大分类能力与计算机视觉的预处理技术,实现了从视频采集到手势识别的高效处理流程。通过不断地优化模型和算法,可以提高识别准确率和实时性,为智能家居、人机交互、远程教育等领域提供有力支持。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071925

相关文章

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

java对接海康摄像头的完整步骤记录

《java对接海康摄像头的完整步骤记录》在Java中调用海康威视摄像头通常需要使用海康威视提供的SDK,下面这篇文章主要给大家介绍了关于java对接海康摄像头的完整步骤,文中通过代码介绍的非常详细,需... 目录一、开发环境准备二、实现Java调用设备接口(一)加载动态链接库(二)结构体、接口重定义1.类型

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性