超高清图像生成新SOTA!清华唐杰教授团队提出Inf-DiT:生成4096图像比UNet节省5倍内存。

本文主要是介绍超高清图像生成新SOTA!清华唐杰教授团队提出Inf-DiT:生成4096图像比UNet节省5倍内存。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

清华大学唐杰教授团队最近在生成超高清图像方面的新工作:Inf-DiT,通过提出一种单向块注意力机制,能够在推理过程中自适应调整内存开销并处理全局依赖关系。基于此模块,该模型采用了 DiT 结构进行上采样,并开发了一种能够上采样各种形状和分辨率的无限超分辨率模型。与常用的 UNet 结构相比,Inf-DiT 在生成 4096×4096 图像时可以节省超过 5 倍的内存。该模型在机器和人类评估中均实现了生成超高清图像的SOTA。

选取基于SDXL的超高分辨率上采样Inf-Dit, Dall-e 3和真实图像示例.

相关链接

项目网址:https://github.com/THUDM/Inf-DiT

论文地址:https://arxiv.org/abs/2405.04312

论文阅读

Inf-Dit:对任意分辨率图像进行上采样的内存高效扩散变压器

摘要

近年来,扩散模型在图像生成方面表现出色。然而,由于生成超高分辨率图像(例如 4096 × 4096)时内存的二次方增加,生成的图像的分辨率通常限制为 1024 × 1024。

在这项工作中,我们提出了一种单向块注意机制,可以在推理过程中自适应地调整内存开销并处理全局依赖关系。在此模块的基础上,我们采用 DiT 结构进行上采样,并开发了一个能够对各种形状和分辨率的图像进行上采样的无限超分辨率模型。

综合实验表明,我们的模型在机器和人工评估中都能在生成超高分辨率图像方面实现 SOTA 性能。与常用的 UNet 结构相比,我们的模型在生成 4096 × 4096 图像时可以节省 5 倍以上的内存。

方法

(左)Inf-DiT的总体架构。(右)Inf-DiT的内部结构 块。为了简单起见,我们没有描述最初存在于DiT中的Layernorm。

左图:单向块注意力机制。在我们的实现中,每个块直接依赖于每一层中的三个块:左上角、左侧和顶部的块。右图:Inf-DiT 的推理过程。Inf-DiT 每次根据内存大小生成 n × n 个块。在此过程中,只有后续块所依赖的块的 KV 缓存存储在内存中。

效果

2048×2048分辨率下不同方法的详细定性比较。

4096×4096分辨率下不同方法的详细定性比较。

人的评价结果。参与者对不同的图片进行排序 我们将4到1的分数依次分配给模型,最后计算出 所有结果的平均值。Inf-Dit在所有三个类别中都获得了最高分。

生成迭代上采样的样本。上图:Inf-Dit可以上样 图像本身生成几次,并生成不同频率的细节以相应的分辨率。下图:在128x128点未能产生pupul后在分辨率方面,后续的上采样阶段很难纠正这个错误。

结论

在这项工作中,我们观察到生成超高分辨率图像的主要障碍是模型隐藏状态占用的大量内存。 基于此,我们提出了单向块注意机制(UniBA),它可以通过在块之间执行批量生成来降低空间复杂度。借助UniBA,我们训练了Inf-DiT,这是一种4倍内存效率的图像上采样器,它在生成和超分辨率任务中均实现了最先进的性能。

这篇关于超高清图像生成新SOTA!清华唐杰教授团队提出Inf-DiT:生成4096图像比UNet节省5倍内存。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1071348

相关文章

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅