构建LangChain应用程序的示例代码:35、如何使用假设性文档嵌入(HyDE)技术来改善文档索引教程

本文主要是介绍构建LangChain应用程序的示例代码:35、如何使用假设性文档嵌入(HyDE)技术来改善文档索引教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用假设性文档嵌入(HyDE)改善文档索引

摘要

本文介绍了如何使用假设性文档嵌入(Hypothetical Document Embeddings,简称HyDE),这是根据一篇论文中描述的技术。HyDE 是一种嵌入技术,它接收查询,生成一个假设性的答案,然后嵌入该生成的文档,并将其作为最终示例使用。

代码及注释

from langchain.chains import HypotheticalDocumentEmbedder, LLMChain
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAI, OpenAIEmbeddings# 初始化基础嵌入模型
base_embeddings = OpenAIEmbeddings()
# 初始化语言模型
llm = OpenAI()# 使用web_search提示加载HyDE
embeddings = HypotheticalDocumentEmbedder.from_llm(llm, base_embeddings, "web_search")# 现在我们可以像使用任何嵌入类一样使用它
result = embeddings.embed_query("泰姬陵在哪里?")

多生成文档

我们也可以生成多个文档,然后组合这些文档的嵌入。默认情况下,我们通过取平均值来组合它们。我们可以通过改变生成文档的LLM来返回多个结果。

# 初始化返回多个结果的语言模型
multi_llm = OpenAI(n=4, best_of=4)# 使用多生成语言模型加载HyDE
embeddings = HypotheticalDocumentEmbedder.from_llm(multi_llm, base_embeddings, "web_search"
)# 嵌入查询
result = embeddings.embed_query("泰姬陵在哪里?")

使用自定义提示

除了使用预配置的提示外,我们也可以轻松构建自己的提示,并在生成文档的LLMChain中使用它们。如果我们知道查询将涉及的领域,这将非常有用,因为我们可以调整提示以生成更类似于该领域的文本。

以下示例中,我们将提示条件设置为生成有关国情咨文的文本。

# 定义自定义提示模板
prompt_template = """请回答用户关于最近一次国情咨文的问题
问题:{question}
答案:"""
# 创建提示模板对象
prompt = PromptTemplate(input_variables=["question"], template=prompt_template)
# 初始化使用自定义提示的LLMChain
llm_chain = LLMChain(llm=llm, prompt=prompt)# 使用自定义提示加载HyDE
embeddings = HypotheticalDocumentEmbedder(llm_chain=llm_chain, base_embeddings=base_embeddings
)# 嵌入查询
result = embeddings.embed_query("总统在谈到Ketanji Brown Jackson时说了什么?"
)

使用HyDE

现在我们有了HyDE,我们可以像使用其他任何嵌入类一样使用它!以下是使用它在国情咨文示例中查找相似段落的方法。

from langchain_community.vectorstores import Chroma
from langchain_text_splitters import CharacterTextSplitter# 读取国情咨文文本
with open("../../state_of_the_union.txt") as f:state_of_the_union = f.read()
# 初始化文本分割器
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
# 分割文本
texts = text_splitter.split_text(state_of_the_union)# 使用Chroma从分割后的文本和嵌入创建文档搜索引擎
docsearch = Chroma.from_texts(texts, embeddings)# 定义查询
query = "总统在谈到Ketanji Brown Jackson时说了什么?"
# 执行相似性搜索
docs = docsearch.similarity_search(query)# 打印搜索结果
print(docs[0].page_content)

总结

本文详细介绍了如何使用假设性文档嵌入(HyDE)技术来改善文档索引。通过提供基础嵌入模型和生成文档的语言模型链(LLMChain),我们可以生成假设性答案并将其嵌入作为最终示例。此外,我们还探讨了如何使用自定义提示来生成特定领域的文本,以及如何将HyDE与其他工具结合使用,如Chroma和CharacterTextSplitter,以实现文档的高效索引和搜索。

扩展知识

  • HyDE (Hypothetical Document Embeddings):一种文档嵌入技术,通过生成假设性答案来改善文档索引和搜索。
  • LLMChain:用于生成文档的语言模型链,可以与HyDE结合使用。
  • OpenAIEmbeddings:OpenAI 提供的嵌入模型,用于生成文档嵌入。
  • PromptTemplate:用于定义和生成自定义提示的模板。
  • Chroma:一个向量存储库,用于文档搜索和相似性搜索。
  • CharacterTextSplitter:用于将长文本分割成更小的块,以便于处理和索引。

这篇关于构建LangChain应用程序的示例代码:35、如何使用假设性文档嵌入(HyDE)技术来改善文档索引教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070368

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可