LLM中表格处理与多模态表格理解

2024-06-17 18:52
文章标签 理解 处理 表格 llm 模态

本文主要是介绍LLM中表格处理与多模态表格理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文档处理中不可避免的遇到表格,关于表格的处理问题,整理如下,供各位参考。

问题描述

RAG中,对上传文档完成版式处理后进行切片,切片前如果识别文档元素是表格,那么则需要对表格进行处理。一般而言,表格处理分成三个部分:

  • TD任务,Table Detection,表格识别
  • TSR任务,Table Structure Recognition,表格结构识别
  • TCD任务,Table Content Recognition,表格内容识别

在这里插入图片描述
表格检测任务是识别文档中的表格元素;表格结构识别则是理解表格的布局和结构;而表格内容识别则是提取表格中的具体数据。这些任务共同构成了表格处理的完整流程。目前主要的思路是通过识别到表格,将表格转化为结构化文本信息,比如HTML或者Markdown,再利用LLM对结构化文本的泛化能力进行分析和处理。
然而,在现实世界的一些场景中,获取高质量的文本表格表示可能比较困难,而表格图像则更容易获取。因此,如何直接使用直观的视觉信息来理解表格是一个关键且迫切的挑战。
在这里插入图片描述

多模态表格理解的思路

多模态表格理解指的是结合文本、图像等多种模态信息来理解表格内容。在文本表格表示难以获取的情况下,如何利用直观的视觉信息来理解表格是一个很好的研究方向。为了解决多模态表格理解问题,构建了一个名为MMTab的大规模数据集,涵盖了广泛的表格图像、指令和任任务,为多模态表格理解提供了丰富的实验场景。MMTab数据集的设计思路和数据构造方式,为研究者提供了新的视角和工具,以应对多模态表格理解中的各种挑战。
《Multimodal Table Understanding》,代码放在:https://github.com/SpursGoZmy/Table-LLaVA

在这里插入图片描述

1、其数据构造的方式:

比较有趣的是做的数据增强方案:

其一,表格级别增强(Table-level augmentations):现实世界的表格具有不同的结构和样式。为了使模型能够处理各种样式的表格,设计了脚本来渲染具有三种不同样式的表格图像:网页风格(Web-page,占比70.8%)、Excel风格(占比19.4%)和Markdown风格(占比9.8%)。还考虑细粒度的调整,如字体类型和单元格颜色。

其二,指令级别增强(Instruction-level augmentations):用户对于同一任务的指令可能会有所不同。为了提高模型对这种变化的鲁棒性,作者使用GPT-4生成新的指令模板和关于JSON输出格式的描述,基于几个手动注释的示例进行少量样本(few-shot)学习。生成的指令模板如果包含语法错误或与原始任务偏离,将被过滤掉。

其三,任务级别增强(Task-level augmentations):尽管收集的14个公共数据集突出了9个学术表格任务,这些任务需要基于表格的推理能力,但现有的多模态大型语言模型(MLLMs)是否真的理解基本的表格结构仍然是一个问题。 为了进一步加强MLLMs对基本表格结构的理解能力,设计了6个表格结构理解任务,例如表格大小检测(TSD)任务。

除了上述策略,作者还将同一表格的单轮样本结合起来,构成了37K多轮对话样本。
在这里插入图片描述

2、数据的具体统计,包括用于微调的数据集以及测试

MMTab数据集包括150K样本用于预训练,232K样本用于指令微调,以及45K和4K样本分别用于内部和外部评估。

数据集中包含了105K张表格图像,这些图像覆盖了广泛结构(例如,具有平坦结构的简单表格以及具有合并单元格和分层标题的复杂表格)。数据集中的表格图像不仅结构多样,还具有不同的风格(网页、Excel、Markdown表格)和来自不同领域的数据(如维基百科和财务报告)。
在这里插入图片描述

3、benchmark的计算方式

在这里插入图片描述

4、进行对应的微调路线

论文中开发了一个通用的表格MLLM Table-LLaVA,使用MMTab-instruct数据集,该数据集包含了多种与表格相关的任务,例如问题回答(TQA)、事实验证(TFV)、文本生成(T2T)等,模型基于之前提出的LLaVA-1.5模型。
在这里插入图片描述

总结

多模态表格处理是一种集成了视觉、文本和结构化数据等多种信息源的技术,旨在更全面地理解和解析表格内容。随着深度学习、大型语言模型等技术的不断进步,多模态表格理解的性能将得到显著提升。

1、多模态表格处理需要强大的视觉识别能力,以识别和解析表格的视觉布局,包括行列、单元格合并等。涉及到图像处理和模式识别技术,如使用深度学习模型来检测表格边界和单元格结构。
2、文本理解是多模态处理的另一关键方面。表格中的文本信息需要通过自然语言处理技术来提取和理解,包括实体识别、关系抽取和语义分析等,以捕捉表格中的数据和它们之间的联系。
3、结构化数据的整合对于多模态表格处理同样重要。将视觉识别的表格结构与文本内容相结合,转化为结构化的数据库格式,可以进一步促进数据的分析和应用。
4、多模态表格处理还应考虑到数据的多样性和复杂性。不同的表格可能来自不同的来源,具有不同的格式和风格。因此,处理系统需要具备高度的灵活性和适应性,以应对各种不同的输入。

此外,随着数据集的不断丰富和完善,模型的泛化能力和适应性也将得到加强。多模态表格处理的未来发展方向可能包括更深层次的语义理解、更智能的数据融合策略,以及更广泛的应用场景,如自动化报告生成、智能数据分析等。

参考资料:

文档表格结构识别技术与数据总结:兼看多模态表格理解基准设计及数据构建思路
《A Study on Reproducibility and Replicability of Table Structure Recognition Methods》
《Deep Learning for Table Detection and Structure Recognition: A Survey》
《TableVLM: Multi-modal Pre-training for Table Structure Recognition》
《Improving Table Structure Recognition with Visual-Alignment Sequential Coordinate Modeling》

这篇关于LLM中表格处理与多模态表格理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1070272

相关文章

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或

Python实现pdf电子发票信息提取到excel表格

《Python实现pdf电子发票信息提取到excel表格》这篇文章主要为大家详细介绍了如何使用Python实现pdf电子发票信息提取并保存到excel表格,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录应用场景详细代码步骤总结优化应用场景电子发票信息提取系统主要应用于以下场景:企业财务部门:需

Python处理大量Excel文件的十个技巧分享

《Python处理大量Excel文件的十个技巧分享》每天被大量Excel文件折磨的你看过来!这是一份Python程序员整理的实用技巧,不说废话,直接上干货,文章通过代码示例讲解的非常详细,需要的朋友可... 目录一、批量读取多个Excel文件二、选择性读取工作表和列三、自动调整格式和样式四、智能数据清洗五、

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结