详解 HBase 的架构和基本原理

2024-06-17 16:20

本文主要是介绍详解 HBase 的架构和基本原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、基本架构

在这里插入图片描述

  • StoreFile:保存实际数据的物理文件,StoreFile 以 HFile 的格式 (KV) 存储在 HDFS 上。每个 Store 会有一个或多个 StoreFile(HFile),数据在每个 StoreFile 中都是有序的
  • MemStore:写缓存,由于 HFile 中的数据要求是有序的,所以数据是先存储在 MemStore 中,排好序后,等到达刷写时机才会刷写到 HFile,每次刷写都会形成一个新的 HFile
  • WAL:由于数据要经 MemStore 排序后才能刷写到 HFile,但把数据保存在内存中会有很高的概率导致数据丢失,为了解决这个问题,数据会先写在一个叫做 Write-Ahead logfile 的文件中,然后再写入 MemStore 中。所以在系统出现故障的时候,数据可以通过这个日志文件重建

二、写流程原理

HBase 的读操作比写操作慢,且读写流程没有 master 参与

在这里插入图片描述

  • 老版本:Zookeeper 中存储的是 -root- 表的位置信息,-root- 表存储的 meta 表的位置信息(防止 meta 表进行切分)
  • Client 先访问 Zookeeper,获取 hbase:meta 表位于哪个 Region Server
  • 访问对应的 Region Server,获取 hbase:meta 表数据,根据写请求的 namespace:table/rowkey 信息查询出目标数据位于哪个 Region Server 中的哪个 Region 中,并将该 table 的 region 信息以及 meta 表的位置信息缓存在客户端的 meta cache,方便下次快速访问
  • 与目标表所在的 Region Server 进行通讯
  • 将写请求命令顺序写入(追加)到内存的 WAL,此时 wal 没有同步到 HDFS
  • 将数据写入对应的 MemStore,数据会在 MemStore 进行排序
  • 同步 wal 到 HDFS,若失败则回滚清空 MemStore 写入的数据
  • 向客户端发送 ack,此时的写请求已经完成
  • 等达到 MemStore 的刷写时机后,将数据刷写到 HFile

三、MemStore Flush

在这里插入图片描述

  • MemStore Flush:刷写,将 Region 中存储在内存中的数据刷写到 HDFS 的磁盘中
  • Flush 时机:
    • RegionServer 级别:
      • 当 RegionServer 中 memstore 的总大小达到 javaHeapSize × hbase.regionserver.global.memstore.size(默认 0.4) × hbase.regionserver.global.memstore.size.lower.limit(默认 0.95) 时,所有 region 会按照其所有 memstore 的大小顺序 (由大到小) 依次进行刷写。直到 RegionServer 中所有 memstore 的总大小减小到上述值以下;当 RegionServer 中 memstore 的总大小达到javaHeapsize × hbase.regionserver.global.memstore.size 时,会停止继续往所有的 memstore 写数据操作
      • 当 memstore 中最后一条数据的写入时间达到hbase.regionserver.optionalcacheflushinterval(默认 1h) 的值时,触发 memstore flush
      • 当 WAL 文件的数量超过 hbase.regionserver.max.logs,region 会按照时间顺序依次进行刷写,直到 WAL 文件数量减小到 hbase.regionserver.max.log 以下 (该属性名已经废弃,现无需手动设置,最大值为 32),该参数用于防止生产上内存配置过大导致刷写时数据积累过大
    • Region 级别:
      • 当某个 region 的 memstore 的大小达到了 hbase.hregion.memstore.flush.size(默认 128M) 时,这个 region 的所有 memstore 都会刷写
      • 当某个 region 的 memstore 的大小达到了 hbase.hregion.memstore.flush.size(默认 128M) × hbase.hregion.memstore.block.multiplier(默认 4)时,会停止继续往该 memstore 写数据

四、读流程原理

在这里插入图片描述

  • Client 先访问 Zookeeper,获取 hbase:meta 表位于哪个 Region Server
  • 访问对应的 Region Server,获取 hbase:meta 表,根据读请求的 namespace:table/rowkey 信息查询出目标数据位于哪个 Region Server 中的哪个 Region 中,并将该 table 的 region 信息以及 meta 表的位置信息缓存在客户端的 meta cache,方便下次访问
  • 与目标 Region Server 进行通讯
  • 分别在 BlockCache (读缓存),MemStore 和 StoreFile (HFile) 中查询目标数据,并将查到的所有数据进行合并 (merge)。此处所有数据是指同一条数据的不同版本 (timestamp) 或者不同的类型 (Put/Delete)
  • 将从 StoreFile 中查询到的数据块 (Block,HFile 数据存储单元,默认大小为 64KB) 缓存到 BlockCache
  • 将合并后 timestamp 最大的数据返回给客户端

五、StoreFile Compaction

在这里插入图片描述

  • 背景:由于 memstore 每次刷写都会生成一个新的 HFile,且同一个字段的不同版本 (timestamp) 和不同类型 (Put/Delete) 有可能会分布在不同的 HFile 中,因此查询时需要遍历所有的 HFile
  • 为了减少 HFile 的个数,以及清理掉过期和删除的数据,HBase 会进行 StoreFile Compaction
  • StoreFile Compaction 分为两种:
    • Minor Compaction:会将临近的若干个较小的 HFile 合并成一个较大的 HFile,但不会清理过期和删除的数据,shell 命令为 compact
    • Major Compaction:会将一个 Store 下的所有的 HFile 合并成一个大 HFile,并且会清理掉过期和删除的数据,shell 命令为 major_compact
  • Major Compaction 触发条件:
    • HFile 存储时长达到 hbase.hregion.majorcompaction(默认 7 天) 的值时自动进行 Major Compaction,但生产上一般会关闭 (设置为 0)
    • 当一个 store 中的 hfile 个数达到或超过 hbase.hstore.compactionThreshold(默认 3) 的值时自动进行 Major Compaction,或手动执行 compact 命令时也进行 Major Compaction

六、数据真正删除

  • 触发数据删除的条件:MemStore Flush 和 Major Compaction
  • 当同一个字段的不同版本数据都在内存中, MemStore Flush 会删除版本小的数据,只将最大版本的数据刷写到磁盘;当同一个字段的不同类型数据都在内存中, MemStore Flush 只会删除 put 类型的数据 (delete 类型可能还要限制磁盘中的同字段数据);当同一个字段的不同版本数据在不同的文件,此时 MemStore Flush 不会删除数据
  • Major Compaction 会删除需要保留的版本数之外的所有过时版本和 delete 类型的数据

七、Region Split

在这里插入图片描述

  • 默认情况下,每个 Table 起初只有一个 Region,随着数据的不断写入增加,Region 会触发自动进行拆分。刚拆分时,两个子 Region 都位于当前的 Region Server,但处于负载均衡的考虑,HMaster 有可能会将某个 Region 转移给其他的 Region Server
  • Region Split 触发时机:
    • 0.94 版本之前:当 1 个 region 中的某个 Store 下所有 StoreFile 的总大小超过 hbase.hregion.max.filesize(默认 10G),该 Region 就会进行拆分
    • 0.94 版本之后:当 1 个 region 中的某个 Store 下所有 StoreFile 的总大小超过 min(R^2 × hbase.hregion.memstore.flush.size, hbase.hregion.max.filesize), 该 Region 就会进行拆分,其中 R 为当前 Region Server 中属于该 Table 的 region 个数
  • 自动切分会造成数据倾斜,产生数据热点问题,在生产上一般不使用,而是在建表时先进行预分区,后续插入数据时轮询的插入到不同的分区
  • 官方建议使用一个列族,避免切分全局 flush 时产生大量小文件

这篇关于详解 HBase 的架构和基本原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069940

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input