使用tensorflow object detection API实现目标检测

2024-06-17 13:58

本文主要是介绍使用tensorflow object detection API实现目标检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境

Windows7 x64
conda 4.3.30

1、TensorFlow安装

首先在conda中创建TensorFlow环境

conda create -n tensorflow python=3.6.2

激活tensorflow环境

activate tensorflow

安装tensorflow

pip install tensorflow==1.12.0

安装完成后会在anaconda安装路径envs文件下自动创建tensorflow目录
在这里插入图片描述

2、tensorflow object detection API安装

下载安装包:https://github.com/xizhonghuai/tensorflow_object_detection_demo
在这里插入图片描述
下载完成后解压,将tensorflow_models文件夹拷贝到不含中文任意路径下,如:
在这里插入图片描述
在anaconda安装路径下找到刚才新创建的tensorflow环境目录
在这里插入图片描述
在\Lib\site-packages下创建tensorflow_model.pth文件,内容如下:

E:\python\workspace\tensorflow_models\research
E:\python\workspace\tensorflow_models\research\slim

进入E:\python\workspace\tensorflow_models\research\slim文件夹下分别执行一下命令:

python setup.py build 
python setup.py install

运行后如果出现error: could not create ‘build’,请删掉\slim文件夹下BUILD文件,在重新执行。

进入E:\python\workspace\tensorflow_models\research文件夹下分别执行一下命令:

python setup.py build 
python setup.py install

这个过程时间稍长,若出现报错情况,请仔细查看报错信息是否提示缺少相关依赖,手动通过pip安装。

测试tensorflow object detection API是否安装成功,在E:\python\workspace\tensorflow_models\research下执行

object_detection/builders/model_builder_test.py

无报错表示安装成功。

说明:
报错信息提示找不到相关模块,请卸载tensorflow,重新安装其他版本。
报错信息提示DLL相关错误,请卸载tensorflow,在以下链接中安装 https://github.com/fo40225/tensorflow-windows-wheel

3、测试

下载官方已训练好的模型到本地,这里我们使用ssd_mobilenet_v1_coco(模型包含90种常见物体的识别)
https://github.com/xizhonghuai/tensorflow_object_detection_demo/blob/master/tensorflow_models/research/object_detection/g3doc/detection_model_zoo.md

在这里插入图片描述
点击下载ssd_mobilenet_v1_coco模型你解压到本地。

打开iead,创建python工程,创建com包,在com包下分别创建,data、test_images、model文件夹

将刚才解压模型包中的frozen_inference_graph.pb文件拷贝到model文件下。

在E:\python\workspace\tensorflow_models\research\object_detection\data_back_up文件夹下拷贝mscoco_label_map.pbtxt文件到data文件下。

在网上随便找一张图片重命名为image1.jpg存放到test_images下

项目结构如下:
在这里插入图片描述

在com包下创建py代码:

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfilefrom collections import defaultdict
from io import StringIO
# from matplotlib import pyplot as plt
from PIL import Image
## Env setup
# This is needed to display the images.# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")from object_detection.utils  import label_map_util
from object_detection.utils  import visualization_utils as vis_utilos.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"# Model preparation
## Variables#Any model exported using the `export_inference_graph.py` tool can be loaded here #simply by changing `PATH_TO_CKPT` to point to a new .pb file.
#By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/object_detection/g3doc/detection_mo#del_zoo.md) for a list of other models that can be run out-of-the-box with varying #speeds and accuracies.# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = 'model/frozen_inference_graph.pb'PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')NUM_CLASSES = 1## Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():od_graph_def = tf.GraphDef()with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:print(PATH_TO_CKPT)serialized_graph = fid.read()od_graph_def.ParseFromString(serialized_graph)tf.import_graph_def(od_graph_def, name='')label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)## Helper code
def load_image_into_numpy_array(image):(im_width, im_height) = image.sizereturn np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)# Detection
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 2) ]
#TEST_IMAGE_PATHS = ['test_images']
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)with detection_graph.as_default():with tf.Session(graph=detection_graph) as sess:for image_path in TEST_IMAGE_PATHS:image = Image.open(image_path)# the array based representation of the image will be used later in order to prepare the# result image with boxes and labels on it.image_np = load_image_into_numpy_array(image)# Expand dimensions since the model expects images to have shape: [1, None, None, 3]image_np_expanded = np.expand_dims(image_np, axis=0)image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')# Each box represents a part of the image where a particular object was detected.boxes = detection_graph.get_tensor_by_name('detection_boxes:0')# Each score represent how level of confidence for each of the objects.# Score is shown on the result image, together with the class label.scores = detection_graph.get_tensor_by_name('detection_scores:0')classes = detection_graph.get_tensor_by_name('detection_classes:0')num_detections = detection_graph.get_tensor_by_name('num_detections:0')# Actual detection.(boxes, scores, classes, num_detections) = sess.run([boxes, scores, classes, num_detections],feed_dict={image_tensor: image_np_expanded})# Visualization of the results of a detection.vis_util.visualize_boxes_and_labels_on_image_array(image_np,np.squeeze(boxes),np.squeeze(classes).astype(np.int32),np.squeeze(scores),category_index,use_normalized_coordinates=True,line_thickness=8)# plt.figure(figsize=IMAGE_SIZE)            # plt.imshow(image_np)# plt.show()im = Image.fromarray(image_np)im.save("ret.jpeg")
print("OK")

测试:

执行python代码,运行成功后将生成识别结果并保存图片到com包下。
在这里插入图片描述

在这里插入图片描述

这篇关于使用tensorflow object detection API实现目标检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069635

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他