单细胞|RNA-seq ATAC-seq 联合分析

2024-06-17 13:44

本文主要是介绍单细胞|RNA-seq ATAC-seq 联合分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

本文[1]将介绍如何利用SignacSeurat这两个工具,对一个同时记录了DNA可接触性和基因表达的单细胞数据集进行综合分析。我们将以一个公开的10x Genomics Multiome数据集为例,该数据集针对的是人体的外周血单核细胞。

数据准备

library(Signac)
library(Seurat)
library(EnsDb.Hsapiens.v86)
library(BSgenome.Hsapiens.UCSC.hg38)

# load the RNA and ATAC data
counts <- Read10X_h5("../vignette_data/multiomic/pbmc_granulocyte_sorted_10k_filtered_feature_bc_matrix.h5")
fragpath <- "../vignette_data/multiomic/pbmc_granulocyte_sorted_10k_atac_fragments.tsv.gz"

# get gene annotations for hg38
annotation <- GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v86)
seqlevels(annotation) <- paste0('chr', seqlevels(annotation))

# create a Seurat object containing the RNA adata
pbmc <- CreateSeuratObject(
  counts = counts$`Gene Expression`,
  assay = "RNA"
)

# create ATAC assay and add it to the object
pbmc[["ATAC"]] <- CreateChromatinAssay(
  counts = counts$Peaks,
  sep = c(":""-"),
  fragments = fragpath,
  annotation = annotation
)

pbmc
alt

质控

我们可以通过DNA可及性数据来评估每个细胞的质量控制指标,并排除那些指标异常的细胞。此外,对于那些在RNA或ATAC检测中计数特别低或特别高的细胞,我们也会进行剔除。

DefaultAssay(pbmc) <- "ATAC"

pbmc <- NucleosomeSignal(pbmc)
pbmc <- TSSEnrichment(pbmc)

对象数据中变量之间的相互关系可以通过 DensityScatter() 函数来直观展示。此外,设置 quantiles=TRUE 选项,可以帮助我们迅速确定不同质量控制指标的适宜阈值。

DensityScatter(pbmc, x = 'nCount_ATAC', y = 'TSS.enrichment', log_x = TRUE, quantiles = TRUE)
alt
VlnPlot(
  object = pbmc,
  features = c("nCount_RNA""nCount_ATAC""TSS.enrichment""nucleosome_signal"),
  ncol = 4,
  pt.size = 0
)
alt
# filter out low quality cells
pbmc <- subset(
  x = pbmc,
  subset = nCount_ATAC < 100000 &
    nCount_RNA < 25000 &
    nCount_ATAC > 1800 &
    nCount_RNA > 1000 &
    nucleosome_signal < 2 &
    TSS.enrichment > 1
)
pbmc
alt

基因表达数据处理

我们可以使用 SCTransform 对基因表达数据进行标准化,并使用 PCA 降低维度。

DefaultAssay(pbmc) <- "RNA"
pbmc <- SCTransform(pbmc)
pbmc <- RunPCA(pbmc)

DNA可及性数据处理

在这里,我们通过执行潜在语义索引 ( LSI ),以处理 scATAC-seq 数据集的相同方式处理 DNA 可及性检测。

DefaultAssay(pbmc) <- "ATAC"
pbmc <- FindTopFeatures(pbmc, min.cutoff = 5)
pbmc <- RunTFIDF(pbmc)
pbmc <- RunSVD(pbmc)

注释细胞类型

为了注释数据集中的细胞类型,我们可以使用 Seurat 包中的工具,将细胞标签从现有的 PBMC 参考数据集中转移过来。

我们将使用 Hao 等人(2020年)的注释 PBMC 参考数据集,可以从这里下载:https://atlas.fredhutch.org/data/nygc/multimodal/pbmc_multimodal.h5seurat

请注意,加载参考数据集需要安装 SeuratDisk 包。

library(SeuratDisk)

# load PBMC reference
reference <- LoadH5Seurat("../vignette_data/multiomic/pbmc_multimodal.h5seurat", assays = list("SCT" = "counts"), reductions = 'spca')
reference <- UpdateSeuratObject(reference)

DefaultAssay(pbmc) <- "SCT"

# transfer cell type labels from reference to query
transfer_anchors <- FindTransferAnchors(
  reference = reference,
  query = pbmc,
  normalization.method = "SCT",
  reference.reduction = "spca",
  recompute.residuals = FALSE,
  dims = 1:50
)

predictions <- TransferData(
  anchorset = transfer_anchors, 
  refdata = reference$celltype.l2,
  weight.reduction = pbmc[['pca']],
  dims = 1:50
)

pbmc <- AddMetaData(
  object = pbmc,
  metadata = predictions
)

# set the cell identities to the cell type predictions
Idents(pbmc) <- "predicted.id"

# remove low-quality predictions
pbmc <- pbmc[, pbmc$prediction.score.max > 0.5]

联合 UMAP 可视化

使用 Seurat v4 中的加权最近邻方法,我们可以计算代表基因表达和 DNA 可及性测量的UMAP图。

# build a joint neighbor graph using both assays
pbmc <- FindMultiModalNeighbors(
  object = pbmc,
  reduction.list = list("pca""lsi"), 
  dims.list = list(1:502:40),
  modality.weight.name = "RNA.weight",
  verbose = TRUE
)

# build a joint UMAP visualization
pbmc <- RunUMAP(
  object = pbmc,
  nn.name = "weighted.nn",
  assay = "RNA",
  verbose = TRUE
)

DimPlot(pbmc, label = TRUE, repel = TRUE, reduction = "umap") + NoLegend()
alt

将峰与基因联系起来

为了找到可能调控每个基因的峰值集合,我们可以计算基因表达与其附近峰值可及性之间的相关性,并校正由于 GC 含量、整体可及性和峰值大小引起的偏差。

在整个基因组上执行这一步骤可能非常耗时,因此我们在这里以部分基因为例,展示峰-基因链接。通过省略 genes.use 参数,可以使用相同的函数来找到所有基因的链接:

DefaultAssay(pbmc) <- "ATAC"

# first compute the GC content for each peak
pbmc <- RegionStats(pbmc, genome = BSgenome.Hsapiens.UCSC.hg38)

# link peaks to genes
pbmc <- LinkPeaks(
  object = pbmc,
  peak.assay = "ATAC",
  expression.assay = "SCT",
  genes.use = c("LYZ""MS4A1")
)

我们可以使用 CoveragePlot() 函数可视化这些链接,或者我们可以在交互式分析中使用 CoverageBrowser() 函数:

idents.plot <- c("B naive""B intermediate""B memory",
                 "CD14 Mono""CD16 Mono""CD8 TEM""CD8 Naive")

p1 <- CoveragePlot(
  object = pbmc,
  region = "MS4A1",
  features = "MS4A1",
  expression.assay = "SCT",
  idents = idents.plot,
  extend.upstream = 500,
  extend.downstream = 10000
)

p2 <- CoveragePlot(
  object = pbmc,
  region = "LYZ",
  features = "LYZ",
  expression.assay = "SCT",
  idents = idents.plot,
  extend.upstream = 8000,
  extend.downstream = 5000
)

patchwork::wrap_plots(p1, p2, ncol = 1)
alt
参考资料
[1]

Source: https://stuartlab.org/signac/articles/pbmc_multiomic

本文由 mdnice 多平台发布

这篇关于单细胞|RNA-seq ATAC-seq 联合分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1069602

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、